Step |
Hyp |
Ref |
Expression |
1 |
|
ovmptss.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
|
mpomptsx |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
3 |
1 2
|
eqtri |
⊢ 𝐹 = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
4 |
3
|
fvmptss |
⊢ ( ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 → ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) ⊆ 𝑋 ) |
5 |
|
vex |
⊢ 𝑢 ∈ V |
6 |
|
vex |
⊢ 𝑣 ∈ V |
7 |
5 6
|
op1std |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑧 ) = 𝑢 ) |
8 |
7
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
9 |
5 6
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑧 ) = 𝑣 ) |
10 |
9
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
11 |
10
|
csbeq2dv |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
12 |
8 11
|
eqtrd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
13 |
12
|
sseq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
14 |
13
|
raliunxp |
⊢ ( ∀ 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
15 |
|
nfcv |
⊢ Ⅎ 𝑢 ( { 𝑥 } × 𝐵 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑢 } |
17 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐵 |
18 |
16 17
|
nfxp |
⊢ Ⅎ 𝑥 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
19 |
|
sneq |
⊢ ( 𝑥 = 𝑢 → { 𝑥 } = { 𝑢 } ) |
20 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
21 |
19 20
|
xpeq12d |
⊢ ( 𝑥 = 𝑢 → ( { 𝑥 } × 𝐵 ) = ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ) |
22 |
15 18 21
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
23 |
22
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
24 |
|
nfv |
⊢ Ⅎ 𝑢 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 |
25 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
27 |
25 26
|
nfss |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
28 |
17 27
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
29 |
|
nfv |
⊢ Ⅎ 𝑣 𝐶 ⊆ 𝑋 |
30 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
31 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
32 |
30 31
|
nfss |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
33 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
34 |
33
|
sseq1d |
⊢ ( 𝑦 = 𝑣 → ( 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
35 |
29 32 34
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ 𝐵 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
36 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → ⦋ 𝑣 / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
37 |
36
|
sseq1d |
⊢ ( 𝑥 = 𝑢 → ( ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
38 |
20 37
|
raleqbidv |
⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑣 ∈ 𝐵 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
39 |
35 38
|
syl5bb |
⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
40 |
24 28 39
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
41 |
14 23 40
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
42 |
|
df-ov |
⊢ ( 𝐸 𝐹 𝐺 ) = ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) |
43 |
42
|
sseq1i |
⊢ ( ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ↔ ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) ⊆ 𝑋 ) |
44 |
4 41 43
|
3imtr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 → ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ) |