| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovmptss.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| 2 |
|
mpomptsx |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
| 3 |
1 2
|
eqtri |
⊢ 𝐹 = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
| 4 |
3
|
fvmptss |
⊢ ( ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 → ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) ⊆ 𝑋 ) |
| 5 |
|
vex |
⊢ 𝑢 ∈ V |
| 6 |
|
vex |
⊢ 𝑣 ∈ V |
| 7 |
5 6
|
op1std |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑧 ) = 𝑢 ) |
| 8 |
7
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
| 9 |
5 6
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑧 ) = 𝑣 ) |
| 10 |
9
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 11 |
10
|
csbeq2dv |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 12 |
8 11
|
eqtrd |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 13 |
12
|
sseq1d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 14 |
13
|
raliunxp |
⊢ ( ∀ 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑢 ( { 𝑥 } × 𝐵 ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝑢 } |
| 17 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐵 |
| 18 |
16 17
|
nfxp |
⊢ Ⅎ 𝑥 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 19 |
|
sneq |
⊢ ( 𝑥 = 𝑢 → { 𝑥 } = { 𝑢 } ) |
| 20 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 21 |
19 20
|
xpeq12d |
⊢ ( 𝑥 = 𝑢 → ( { 𝑥 } × 𝐵 ) = ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ) |
| 22 |
15 18 21
|
cbviun |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 23 |
22
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑢 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 |
| 25 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
| 27 |
25 26
|
nfss |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
| 28 |
17 27
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
| 29 |
|
nfv |
⊢ Ⅎ 𝑣 𝐶 ⊆ 𝑋 |
| 30 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑋 |
| 32 |
30 31
|
nfss |
⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
| 33 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 34 |
33
|
sseq1d |
⊢ ( 𝑦 = 𝑣 → ( 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 35 |
29 32 34
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ 𝐵 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 36 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → ⦋ 𝑣 / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 37 |
36
|
sseq1d |
⊢ ( 𝑥 = 𝑢 → ( ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 38 |
20 37
|
raleqbidv |
⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑣 ∈ 𝐵 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 39 |
35 38
|
bitrid |
⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 40 |
24 28 39
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 41 |
14 23 40
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 42 |
|
df-ov |
⊢ ( 𝐸 𝐹 𝐺 ) = ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) |
| 43 |
42
|
sseq1i |
⊢ ( ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ↔ ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) ⊆ 𝑋 ) |
| 44 |
4 41 43
|
3imtr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 → ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ) |