Metamath Proof Explorer


Theorem ovmul

Description: Multiplication of complex numbers produces the same value as multiplication expressed in maps-to notation of the same complex numbers. (Contributed by GG, 16-Mar-2025)

Ref Expression
Assertion ovmul ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝐵 ) = ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 oveq12 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝑥 · 𝑦 ) = ( 𝐴 · 𝐵 ) )
2 eqid ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) )
3 ovex ( 𝐴 · 𝐵 ) ∈ V
4 1 2 3 ovmpoa ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝐵 ) = ( 𝐴 · 𝐵 ) )