Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( ℕ ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐴 ) |
2 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
3 |
|
f1of |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴 → 𝑓 : ℕ ⟶ 𝐴 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 : ℕ ⟶ 𝐴 ) |
5 |
4
|
ffvelrnda |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝐴 ) |
6 |
2 5
|
sseldd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
7 |
6
|
leidd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
8 |
|
df-br |
⊢ ( ( 𝑓 ‘ 𝑥 ) ≤ ( 𝑓 ‘ 𝑥 ) ↔ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ≤ ) |
9 |
7 8
|
sylib |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ≤ ) |
10 |
6 6
|
opelxpd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ( ℝ × ℝ ) ) |
11 |
9 10
|
elind |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
12 |
|
df-ov |
⊢ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) = ( I ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
13 |
|
opex |
⊢ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ V |
14 |
|
fvi |
⊢ ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ V → ( I ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
15 |
13 14
|
ax-mp |
⊢ ( I ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 |
16 |
12 15
|
eqtri |
⊢ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 |
17 |
16
|
mpteq2i |
⊢ ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
18 |
11 17
|
fmptd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
19 |
|
nnex |
⊢ ℕ ∈ V |
20 |
19
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ℕ ∈ V ) |
21 |
6
|
recnd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) |
22 |
4
|
feqmptd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 = ( 𝑥 ∈ ℕ ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
23 |
20 21 21 22 22
|
offval2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑓 ∘f I 𝑓 ) = ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) ) |
24 |
23
|
feq1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ↔ ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) I ( 𝑓 ‘ 𝑥 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) ) |
25 |
18 24
|
mpbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
26 |
|
f1ofo |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴 → 𝑓 : ℕ –onto→ 𝐴 ) |
27 |
26
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 : ℕ –onto→ 𝐴 ) |
28 |
|
forn |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
29 |
27 28
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ran 𝑓 = 𝐴 ) |
30 |
29
|
eleq2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ ran 𝑓 ↔ 𝑦 ∈ 𝐴 ) ) |
31 |
|
f1ofn |
⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴 → 𝑓 Fn ℕ ) |
32 |
31
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝑓 Fn ℕ ) |
33 |
|
fvelrnb |
⊢ ( 𝑓 Fn ℕ → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ ran 𝑓 ↔ ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
35 |
30 34
|
bitr3d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ 𝐴 ↔ ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 ) ) |
36 |
23 17
|
eqtrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑓 ∘f I 𝑓 ) = ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
37 |
36
|
fveq1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) ) |
38 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
39 |
38
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℕ ∧ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ V ) → ( ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
40 |
13 39
|
mpan2 |
⊢ ( 𝑥 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
41 |
37 40
|
sylan9eq |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
42 |
41
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 1st ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
43 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
44 |
43 43
|
op1st |
⊢ ( 1st ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = ( 𝑓 ‘ 𝑥 ) |
45 |
42 44
|
eqtrdi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
46 |
45 7
|
eqbrtrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ) |
47 |
41
|
fveq2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 2nd ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
48 |
43 43
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) = ( 𝑓 ‘ 𝑥 ) |
49 |
47 48
|
eqtrdi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
50 |
7 49
|
breqtrrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) |
51 |
46 50
|
jca |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) |
52 |
|
breq2 |
⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ↔ ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
53 |
|
breq1 |
⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ↔ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) |
54 |
52 53
|
anbi12d |
⊢ ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ↔ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
55 |
51 54
|
syl5ibcom |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑥 ) = 𝑦 → ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
56 |
55
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ∃ 𝑥 ∈ ℕ ( 𝑓 ‘ 𝑥 ) = 𝑦 → ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
57 |
35 56
|
sylbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑦 ∈ 𝐴 → ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
58 |
57
|
ralrimiv |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) |
59 |
|
ovolficc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
60 |
25 59
|
syldan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ∃ 𝑥 ∈ ℕ ( ( 1st ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ≤ 𝑦 ∧ 𝑦 ≤ ( 2nd ‘ ( ( 𝑓 ∘f I 𝑓 ) ‘ 𝑥 ) ) ) ) ) |
61 |
58 60
|
mpbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ) |
62 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) |
63 |
62
|
ovollb2 |
⊢ ( ( ( 𝑓 ∘f I 𝑓 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ ( 𝑓 ∘f I 𝑓 ) ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) ) |
64 |
25 61 63
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) ) |
65 |
21 21
|
opelxpd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ∈ ( ℂ × ℂ ) ) |
66 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
67 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
68 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
69 |
66 67 68
|
mp2an |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ |
70 |
69
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ℝ ) |
71 |
70
|
feqmptd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( abs ∘ − ) = ( 𝑦 ∈ ( ℂ × ℂ ) ↦ ( ( abs ∘ − ) ‘ 𝑦 ) ) ) |
72 |
|
fveq2 |
⊢ ( 𝑦 = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 → ( ( abs ∘ − ) ‘ 𝑦 ) = ( ( abs ∘ − ) ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) ) |
73 |
|
df-ov |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) = ( ( abs ∘ − ) ‘ 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 ) |
74 |
72 73
|
eqtr4di |
⊢ ( 𝑦 = 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑥 ) 〉 → ( ( abs ∘ − ) ‘ 𝑦 ) = ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) ) |
75 |
65 36 71 74
|
fmptco |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) = ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) ) ) |
76 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
77 |
|
met0 |
⊢ ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ ℂ ) → ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
78 |
76 21 77
|
sylancr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) = 0 ) |
79 |
78
|
mpteq2dva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( 𝑥 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑥 ) ( abs ∘ − ) ( 𝑓 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ 0 ) ) |
80 |
75 79
|
eqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) = ( 𝑥 ∈ ℕ ↦ 0 ) ) |
81 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑥 ∈ ℕ ↦ 0 ) |
82 |
80 81
|
eqtr4di |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) = ( ℕ × { 0 } ) ) |
83 |
82
|
seqeq3d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = seq 1 ( + , ( ℕ × { 0 } ) ) ) |
84 |
|
1z |
⊢ 1 ∈ ℤ |
85 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
86 |
85
|
ser0f |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ℕ × { 0 } ) ) = ( ℕ × { 0 } ) ) |
87 |
84 86
|
ax-mp |
⊢ seq 1 ( + , ( ℕ × { 0 } ) ) = ( ℕ × { 0 } ) |
88 |
83 87
|
eqtrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = ( ℕ × { 0 } ) ) |
89 |
88
|
rneqd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = ran ( ℕ × { 0 } ) ) |
90 |
|
1nn |
⊢ 1 ∈ ℕ |
91 |
|
ne0i |
⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) |
92 |
|
rnxp |
⊢ ( ℕ ≠ ∅ → ran ( ℕ × { 0 } ) = { 0 } ) |
93 |
90 91 92
|
mp2b |
⊢ ran ( ℕ × { 0 } ) = { 0 } |
94 |
89 93
|
eqtrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) = { 0 } ) |
95 |
94
|
supeq1d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) = sup ( { 0 } , ℝ* , < ) ) |
96 |
|
xrltso |
⊢ < Or ℝ* |
97 |
|
0xr |
⊢ 0 ∈ ℝ* |
98 |
|
supsn |
⊢ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) → sup ( { 0 } , ℝ* , < ) = 0 ) |
99 |
96 97 98
|
mp2an |
⊢ sup ( { 0 } , ℝ* , < ) = 0 |
100 |
95 99
|
eqtrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑓 ∘f I 𝑓 ) ) ) , ℝ* , < ) = 0 ) |
101 |
64 100
|
breqtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) ≤ 0 ) |
102 |
|
ovolge0 |
⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) |
103 |
102
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
104 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
105 |
104
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
106 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) |
107 |
105 97 106
|
sylancl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) |
108 |
101 103 107
|
mpbir2and |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑓 : ℕ –1-1-onto→ 𝐴 ) → ( vol* ‘ 𝐴 ) = 0 ) |
109 |
108
|
ex |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑓 : ℕ –1-1-onto→ 𝐴 → ( vol* ‘ 𝐴 ) = 0 ) ) |
110 |
109
|
exlimdv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐴 → ( vol* ‘ 𝐴 ) = 0 ) ) |
111 |
1 110
|
syl5bi |
⊢ ( 𝐴 ⊆ ℝ → ( ℕ ≈ 𝐴 → ( vol* ‘ 𝐴 ) = 0 ) ) |
112 |
|
ensym |
⊢ ( 𝐴 ≈ ℕ → ℕ ≈ 𝐴 ) |
113 |
111 112
|
impel |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≈ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) |