| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren | ⊢ ( ℕ  ≈  𝐴  ↔  ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐴 ) | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  𝐴  ⊆  ℝ ) | 
						
							| 3 |  | f1of | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴  →  𝑓 : ℕ ⟶ 𝐴 ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  𝑓 : ℕ ⟶ 𝐴 ) | 
						
							| 5 | 4 | ffvelcdmda | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑓 ‘ 𝑥 )  ∈  𝐴 ) | 
						
							| 6 | 2 5 | sseldd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 7 | 6 | leidd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑓 ‘ 𝑥 )  ≤  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 8 |  | df-br | ⊢ ( ( 𝑓 ‘ 𝑥 )  ≤  ( 𝑓 ‘ 𝑥 )  ↔  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈   ≤  ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈   ≤  ) | 
						
							| 10 | 6 6 | opelxpd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 11 | 9 10 | elind | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 12 |  | df-ov | ⊢ ( ( 𝑓 ‘ 𝑥 )  I  ( 𝑓 ‘ 𝑥 ) )  =  (  I  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 13 |  | opex | ⊢ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈  V | 
						
							| 14 |  | fvi | ⊢ ( 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈  V  →  (  I  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 )  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ (  I  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 )  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 | 
						
							| 16 | 12 15 | eqtri | ⊢ ( ( 𝑓 ‘ 𝑥 )  I  ( 𝑓 ‘ 𝑥 ) )  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 | 
						
							| 17 | 16 | mpteq2i | ⊢ ( 𝑥  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑥 )  I  ( 𝑓 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 18 | 11 17 | fmptd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑥 )  I  ( 𝑓 ‘ 𝑥 ) ) ) : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 19 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ℕ  ∈  V ) | 
						
							| 21 | 6 | recnd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 22 | 4 | feqmptd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  𝑓  =  ( 𝑥  ∈  ℕ  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 23 | 20 21 21 22 22 | offval2 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑓  ∘f   I  𝑓 )  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑥 )  I  ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 24 | 23 | feq1d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ( 𝑓  ∘f   I  𝑓 ) : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ↔  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑥 )  I  ( 𝑓 ‘ 𝑥 ) ) ) : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) ) | 
						
							| 25 | 18 24 | mpbird | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑓  ∘f   I  𝑓 ) : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 26 |  | f1ofo | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴  →  𝑓 : ℕ –onto→ 𝐴 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  𝑓 : ℕ –onto→ 𝐴 ) | 
						
							| 28 |  | forn | ⊢ ( 𝑓 : ℕ –onto→ 𝐴  →  ran  𝑓  =  𝐴 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ran  𝑓  =  𝐴 ) | 
						
							| 30 | 29 | eleq2d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑦  ∈  ran  𝑓  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 31 |  | f1ofn | ⊢ ( 𝑓 : ℕ –1-1-onto→ 𝐴  →  𝑓  Fn  ℕ ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  𝑓  Fn  ℕ ) | 
						
							| 33 |  | fvelrnb | ⊢ ( 𝑓  Fn  ℕ  →  ( 𝑦  ∈  ran  𝑓  ↔  ∃ 𝑥  ∈  ℕ ( 𝑓 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑦  ∈  ran  𝑓  ↔  ∃ 𝑥  ∈  ℕ ( 𝑓 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 35 | 30 34 | bitr3d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑦  ∈  𝐴  ↔  ∃ 𝑥  ∈  ℕ ( 𝑓 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 36 | 23 17 | eqtrdi | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑓  ∘f   I  𝑓 )  =  ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ) | 
						
							| 37 | 36 | fveq1d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 )  =  ( ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 ) ) | 
						
							| 38 |  | eqid | ⊢ ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 )  =  ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 39 | 38 | fvmpt2 | ⊢ ( ( 𝑥  ∈  ℕ  ∧  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈  V )  →  ( ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 )  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 40 | 13 39 | mpan2 | ⊢ ( 𝑥  ∈  ℕ  →  ( ( 𝑥  ∈  ℕ  ↦  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ‘ 𝑥 )  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 41 | 37 40 | sylan9eq | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 )  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 42 | 41 | fveq2d | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  =  ( 1st  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ) | 
						
							| 43 |  | fvex | ⊢ ( 𝑓 ‘ 𝑥 )  ∈  V | 
						
							| 44 | 43 43 | op1st | ⊢ ( 1st  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 )  =  ( 𝑓 ‘ 𝑥 ) | 
						
							| 45 | 42 44 | eqtrdi | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 46 | 45 7 | eqbrtrd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 47 | 41 | fveq2d | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  =  ( 2nd  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ) | 
						
							| 48 | 43 43 | op2nd | ⊢ ( 2nd  ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 )  =  ( 𝑓 ‘ 𝑥 ) | 
						
							| 49 | 47 48 | eqtrdi | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  =  ( 𝑓 ‘ 𝑥 ) ) | 
						
							| 50 | 7 49 | breqtrrd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( 𝑓 ‘ 𝑥 )  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) | 
						
							| 51 | 46 50 | jca | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  ( 𝑓 ‘ 𝑥 )  ∧  ( 𝑓 ‘ 𝑥 )  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) | 
						
							| 52 |  | breq2 | ⊢ ( ( 𝑓 ‘ 𝑥 )  =  𝑦  →  ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  ( 𝑓 ‘ 𝑥 )  ↔  ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦 ) ) | 
						
							| 53 |  | breq1 | ⊢ ( ( 𝑓 ‘ 𝑥 )  =  𝑦  →  ( ( 𝑓 ‘ 𝑥 )  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ↔  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) | 
						
							| 54 | 52 53 | anbi12d | ⊢ ( ( 𝑓 ‘ 𝑥 )  =  𝑦  →  ( ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  ( 𝑓 ‘ 𝑥 )  ∧  ( 𝑓 ‘ 𝑥 )  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) )  ↔  ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 55 | 51 54 | syl5ibcom | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑥 )  =  𝑦  →  ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 56 | 55 | reximdva | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ∃ 𝑥  ∈  ℕ ( 𝑓 ‘ 𝑥 )  =  𝑦  →  ∃ 𝑥  ∈  ℕ ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 57 | 35 56 | sylbid | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑦  ∈  𝐴  →  ∃ 𝑥  ∈  ℕ ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 58 | 57 | ralrimiv | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ∀ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  ℕ ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) | 
						
							| 59 |  | ovolficc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ( 𝑓  ∘f   I  𝑓 ) : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  ( 𝐴  ⊆  ∪  ran  ( [,]  ∘  ( 𝑓  ∘f   I  𝑓 ) )  ↔  ∀ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  ℕ ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 60 | 25 59 | syldan | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝐴  ⊆  ∪  ran  ( [,]  ∘  ( 𝑓  ∘f   I  𝑓 ) )  ↔  ∀ 𝑦  ∈  𝐴 ∃ 𝑥  ∈  ℕ ( ( 1st  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) )  ≤  𝑦  ∧  𝑦  ≤  ( 2nd  ‘ ( ( 𝑓  ∘f   I  𝑓 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 61 | 58 60 | mpbird | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  𝐴  ⊆  ∪  ran  ( [,]  ∘  ( 𝑓  ∘f   I  𝑓 ) ) ) | 
						
							| 62 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) ) | 
						
							| 63 | 62 | ovollb2 | ⊢ ( ( ( 𝑓  ∘f   I  𝑓 ) : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝐴  ⊆  ∪  ran  ( [,]  ∘  ( 𝑓  ∘f   I  𝑓 ) ) )  →  ( vol* ‘ 𝐴 )  ≤  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 64 | 25 61 63 | syl2anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( vol* ‘ 𝐴 )  ≤  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 65 | 21 21 | opelxpd | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  ∈  ( ℂ  ×  ℂ ) ) | 
						
							| 66 |  | absf | ⊢ abs : ℂ ⟶ ℝ | 
						
							| 67 |  | subf | ⊢  −  : ( ℂ  ×  ℂ ) ⟶ ℂ | 
						
							| 68 |  | fco | ⊢ ( ( abs : ℂ ⟶ ℝ  ∧   −  : ( ℂ  ×  ℂ ) ⟶ ℂ )  →  ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ ) | 
						
							| 69 | 66 67 68 | mp2an | ⊢ ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ | 
						
							| 70 | 69 | a1i | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( abs  ∘   −  ) : ( ℂ  ×  ℂ ) ⟶ ℝ ) | 
						
							| 71 | 70 | feqmptd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( abs  ∘   −  )  =  ( 𝑦  ∈  ( ℂ  ×  ℂ )  ↦  ( ( abs  ∘   −  ) ‘ 𝑦 ) ) ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝑦  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  →  ( ( abs  ∘   −  ) ‘ 𝑦 )  =  ( ( abs  ∘   −  ) ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) ) | 
						
							| 73 |  | df-ov | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( abs  ∘   −  ) ( 𝑓 ‘ 𝑥 ) )  =  ( ( abs  ∘   −  ) ‘ 〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉 ) | 
						
							| 74 | 72 73 | eqtr4di | ⊢ ( 𝑦  =  〈 ( 𝑓 ‘ 𝑥 ) ,  ( 𝑓 ‘ 𝑥 ) 〉  →  ( ( abs  ∘   −  ) ‘ 𝑦 )  =  ( ( 𝑓 ‘ 𝑥 ) ( abs  ∘   −  ) ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 75 | 65 36 71 74 | fmptco | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) )  =  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑥 ) ( abs  ∘   −  ) ( 𝑓 ‘ 𝑥 ) ) ) ) | 
						
							| 76 |  | cnmet | ⊢ ( abs  ∘   −  )  ∈  ( Met ‘ ℂ ) | 
						
							| 77 |  | met0 | ⊢ ( ( ( abs  ∘   −  )  ∈  ( Met ‘ ℂ )  ∧  ( 𝑓 ‘ 𝑥 )  ∈  ℂ )  →  ( ( 𝑓 ‘ 𝑥 ) ( abs  ∘   −  ) ( 𝑓 ‘ 𝑥 ) )  =  0 ) | 
						
							| 78 | 76 21 77 | sylancr | ⊢ ( ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  ∧  𝑥  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑥 ) ( abs  ∘   −  ) ( 𝑓 ‘ 𝑥 ) )  =  0 ) | 
						
							| 79 | 78 | mpteq2dva | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( 𝑥  ∈  ℕ  ↦  ( ( 𝑓 ‘ 𝑥 ) ( abs  ∘   −  ) ( 𝑓 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ℕ  ↦  0 ) ) | 
						
							| 80 | 75 79 | eqtrd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) )  =  ( 𝑥  ∈  ℕ  ↦  0 ) ) | 
						
							| 81 |  | fconstmpt | ⊢ ( ℕ  ×  { 0 } )  =  ( 𝑥  ∈  ℕ  ↦  0 ) | 
						
							| 82 | 80 81 | eqtr4di | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) )  =  ( ℕ  ×  { 0 } ) ) | 
						
							| 83 | 82 | seqeq3d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) )  =  seq 1 (  +  ,  ( ℕ  ×  { 0 } ) ) ) | 
						
							| 84 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 85 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 86 | 85 | ser0f | ⊢ ( 1  ∈  ℤ  →  seq 1 (  +  ,  ( ℕ  ×  { 0 } ) )  =  ( ℕ  ×  { 0 } ) ) | 
						
							| 87 | 84 86 | ax-mp | ⊢ seq 1 (  +  ,  ( ℕ  ×  { 0 } ) )  =  ( ℕ  ×  { 0 } ) | 
						
							| 88 | 83 87 | eqtrdi | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) )  =  ( ℕ  ×  { 0 } ) ) | 
						
							| 89 | 88 | rneqd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) )  =  ran  ( ℕ  ×  { 0 } ) ) | 
						
							| 90 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 91 |  | ne0i | ⊢ ( 1  ∈  ℕ  →  ℕ  ≠  ∅ ) | 
						
							| 92 |  | rnxp | ⊢ ( ℕ  ≠  ∅  →  ran  ( ℕ  ×  { 0 } )  =  { 0 } ) | 
						
							| 93 | 90 91 92 | mp2b | ⊢ ran  ( ℕ  ×  { 0 } )  =  { 0 } | 
						
							| 94 | 89 93 | eqtrdi | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) )  =  { 0 } ) | 
						
							| 95 | 94 | supeq1d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) ) ,  ℝ* ,   <  )  =  sup ( { 0 } ,  ℝ* ,   <  ) ) | 
						
							| 96 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 97 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 98 |  | supsn | ⊢ ( (  <   Or  ℝ*  ∧  0  ∈  ℝ* )  →  sup ( { 0 } ,  ℝ* ,   <  )  =  0 ) | 
						
							| 99 | 96 97 98 | mp2an | ⊢ sup ( { 0 } ,  ℝ* ,   <  )  =  0 | 
						
							| 100 | 95 99 | eqtrdi | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  ( 𝑓  ∘f   I  𝑓 ) ) ) ,  ℝ* ,   <  )  =  0 ) | 
						
							| 101 | 64 100 | breqtrd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( vol* ‘ 𝐴 )  ≤  0 ) | 
						
							| 102 |  | ovolge0 | ⊢ ( 𝐴  ⊆  ℝ  →  0  ≤  ( vol* ‘ 𝐴 ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  0  ≤  ( vol* ‘ 𝐴 ) ) | 
						
							| 104 |  | ovolcl | ⊢ ( 𝐴  ⊆  ℝ  →  ( vol* ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( vol* ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 106 |  | xrletri3 | ⊢ ( ( ( vol* ‘ 𝐴 )  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( ( vol* ‘ 𝐴 )  =  0  ↔  ( ( vol* ‘ 𝐴 )  ≤  0  ∧  0  ≤  ( vol* ‘ 𝐴 ) ) ) ) | 
						
							| 107 | 105 97 106 | sylancl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( ( vol* ‘ 𝐴 )  =  0  ↔  ( ( vol* ‘ 𝐴 )  ≤  0  ∧  0  ≤  ( vol* ‘ 𝐴 ) ) ) ) | 
						
							| 108 | 101 103 107 | mpbir2and | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝑓 : ℕ –1-1-onto→ 𝐴 )  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 109 | 108 | ex | ⊢ ( 𝐴  ⊆  ℝ  →  ( 𝑓 : ℕ –1-1-onto→ 𝐴  →  ( vol* ‘ 𝐴 )  =  0 ) ) | 
						
							| 110 | 109 | exlimdv | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∃ 𝑓 𝑓 : ℕ –1-1-onto→ 𝐴  →  ( vol* ‘ 𝐴 )  =  0 ) ) | 
						
							| 111 | 1 110 | biimtrid | ⊢ ( 𝐴  ⊆  ℝ  →  ( ℕ  ≈  𝐴  →  ( vol* ‘ 𝐴 )  =  0 ) ) | 
						
							| 112 |  | ensym | ⊢ ( 𝐴  ≈  ℕ  →  ℕ  ≈  𝐴 ) | 
						
							| 113 | 111 112 | impel | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≈  ℕ )  →  ( vol* ‘ 𝐴 )  =  0 ) |