| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  ℕ ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  𝐴  ⊆  ℝ ) | 
						
							| 3 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 4 |  | unss | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  ℕ  ⊆  ℝ )  ↔  ( 𝐴  ∪  ℕ )  ⊆  ℝ ) | 
						
							| 5 | 2 3 4 | sylanblc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( 𝐴  ∪  ℕ )  ⊆  ℝ ) | 
						
							| 6 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 7 |  | domentr | ⊢ ( ( 𝐴  ≼  ℕ  ∧  ℕ  ≈  ω )  →  𝐴  ≼  ω ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝐴  ≼  ℕ  →  𝐴  ≼  ω ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  𝐴  ≼  ω ) | 
						
							| 10 |  | nnct | ⊢ ℕ  ≼  ω | 
						
							| 11 |  | unctb | ⊢ ( ( 𝐴  ≼  ω  ∧  ℕ  ≼  ω )  →  ( 𝐴  ∪  ℕ )  ≼  ω ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( 𝐴  ∪  ℕ )  ≼  ω ) | 
						
							| 13 | 6 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 14 |  | domentr | ⊢ ( ( ( 𝐴  ∪  ℕ )  ≼  ω  ∧  ω  ≈  ℕ )  →  ( 𝐴  ∪  ℕ )  ≼  ℕ ) | 
						
							| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( 𝐴  ∪  ℕ )  ≼  ℕ ) | 
						
							| 16 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 17 | 16 | ssex | ⊢ ( ( 𝐴  ∪  ℕ )  ⊆  ℝ  →  ( 𝐴  ∪  ℕ )  ∈  V ) | 
						
							| 18 | 5 17 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( 𝐴  ∪  ℕ )  ∈  V ) | 
						
							| 19 |  | ssun2 | ⊢ ℕ  ⊆  ( 𝐴  ∪  ℕ ) | 
						
							| 20 |  | ssdomg | ⊢ ( ( 𝐴  ∪  ℕ )  ∈  V  →  ( ℕ  ⊆  ( 𝐴  ∪  ℕ )  →  ℕ  ≼  ( 𝐴  ∪  ℕ ) ) ) | 
						
							| 21 | 18 19 20 | mpisyl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ℕ  ≼  ( 𝐴  ∪  ℕ ) ) | 
						
							| 22 |  | sbth | ⊢ ( ( ( 𝐴  ∪  ℕ )  ≼  ℕ  ∧  ℕ  ≼  ( 𝐴  ∪  ℕ ) )  →  ( 𝐴  ∪  ℕ )  ≈  ℕ ) | 
						
							| 23 | 15 21 22 | syl2anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( 𝐴  ∪  ℕ )  ≈  ℕ ) | 
						
							| 24 |  | ovolctb | ⊢ ( ( ( 𝐴  ∪  ℕ )  ⊆  ℝ  ∧  ( 𝐴  ∪  ℕ )  ≈  ℕ )  →  ( vol* ‘ ( 𝐴  ∪  ℕ ) )  =  0 ) | 
						
							| 25 | 5 23 24 | syl2anc | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( vol* ‘ ( 𝐴  ∪  ℕ ) )  =  0 ) | 
						
							| 26 |  | ovolssnul | ⊢ ( ( 𝐴  ⊆  ( 𝐴  ∪  ℕ )  ∧  ( 𝐴  ∪  ℕ )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐴  ∪  ℕ ) )  =  0 )  →  ( vol* ‘ 𝐴 )  =  0 ) | 
						
							| 27 | 1 5 25 26 | mp3an2i | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( vol* ‘ 𝐴 )  =  0 ) |