Step |
Hyp |
Ref |
Expression |
1 |
|
xrltso |
⊢ < Or ℝ* |
2 |
1
|
infex |
⊢ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ∈ V |
3 |
|
df-ovol |
⊢ vol* = ( 𝑥 ∈ 𝒫 ℝ ↦ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝑥 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
4 |
2 3
|
fnmpti |
⊢ vol* Fn 𝒫 ℝ |
5 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ ) |
6 |
|
ovolcl |
⊢ ( 𝑥 ⊆ ℝ → ( vol* ‘ 𝑥 ) ∈ ℝ* ) |
7 |
|
ovolge0 |
⊢ ( 𝑥 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝑥 ) ) |
8 |
|
pnfge |
⊢ ( ( vol* ‘ 𝑥 ) ∈ ℝ* → ( vol* ‘ 𝑥 ) ≤ +∞ ) |
9 |
6 8
|
syl |
⊢ ( 𝑥 ⊆ ℝ → ( vol* ‘ 𝑥 ) ≤ +∞ ) |
10 |
|
0xr |
⊢ 0 ∈ ℝ* |
11 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
12 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol* ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( vol* ‘ 𝑥 ) ∧ ( vol* ‘ 𝑥 ) ≤ +∞ ) ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( vol* ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( vol* ‘ 𝑥 ) ∧ ( vol* ‘ 𝑥 ) ≤ +∞ ) ) |
14 |
6 7 9 13
|
syl3anbrc |
⊢ ( 𝑥 ⊆ ℝ → ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
15 |
5 14
|
syl |
⊢ ( 𝑥 ∈ 𝒫 ℝ → ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
16 |
15
|
rgen |
⊢ ∀ 𝑥 ∈ 𝒫 ℝ ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) |
17 |
|
ffnfv |
⊢ ( vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) ↔ ( vol* Fn 𝒫 ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( vol* ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
18 |
4 16 17
|
mpbir2an |
⊢ vol* : 𝒫 ℝ ⟶ ( 0 [,] +∞ ) |