Description: A finite set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ ) | |
| 2 | fict | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≼ ω ) | |
| 3 | nnenom | ⊢ ℕ ≈ ω | |
| 4 | 3 | ensymi | ⊢ ω ≈ ℕ | 
| 5 | domentr | ⊢ ( ( 𝐴 ≼ ω ∧ ω ≈ ℕ ) → 𝐴 ≼ ℕ ) | |
| 6 | 2 4 5 | sylancl | ⊢ ( 𝐴 ∈ Fin → 𝐴 ≼ ℕ ) | 
| 7 | ovolctb2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ 𝐴 ) = 0 ) | |
| 8 | 1 6 7 | syl2anr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) = 0 ) |