Metamath Proof Explorer


Theorem ovolfi

Description: A finite set has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Assertion ovolfi ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 id ( 𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ )
2 fict ( 𝐴 ∈ Fin → 𝐴 ≼ ω )
3 nnenom ℕ ≈ ω
4 3 ensymi ω ≈ ℕ
5 domentr ( ( 𝐴 ≼ ω ∧ ω ≈ ℕ ) → 𝐴 ≼ ℕ )
6 2 4 5 sylancl ( 𝐴 ∈ Fin → 𝐴 ≼ ℕ )
7 ovolctb2 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≼ ℕ ) → ( vol* ‘ 𝐴 ) = 0 )
8 1 6 7 syl2anr ( ( 𝐴 ∈ Fin ∧ 𝐴 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) = 0 )