| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnco2 |
⊢ ran ( [,] ∘ 𝐹 ) = ( [,] “ ran 𝐹 ) |
| 2 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 3 |
2
|
elin2d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) ) |
| 4 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑦 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐹 ‘ 𝑦 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) |
| 6 |
5
|
fveq2d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) ) |
| 7 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( [,] ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) 〉 ) |
| 8 |
6 7
|
eqtr4di |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 9 |
|
xp1st |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 10 |
3 9
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 11 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ 𝑦 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 12 |
3 11
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 13 |
|
iccssre |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) ⊆ ℝ ) |
| 14 |
10 12 13
|
syl2anc |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑦 ) ) [,] ( 2nd ‘ ( 𝐹 ‘ 𝑦 ) ) ) ⊆ ℝ ) |
| 15 |
8 14
|
eqsstrd |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
| 16 |
|
reex |
⊢ ℝ ∈ V |
| 17 |
16
|
elpw2 |
⊢ ( ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ↔ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ⊆ ℝ ) |
| 18 |
15 17
|
sylibr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑦 ∈ ℕ ) → ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) |
| 19 |
18
|
ralrimiva |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∀ 𝑦 ∈ ℕ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) |
| 20 |
|
ffn |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐹 Fn ℕ ) |
| 21 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( [,] ‘ 𝑥 ) = ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ↔ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) ) |
| 23 |
22
|
ralrn |
⊢ ( 𝐹 Fn ℕ → ( ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ↔ ∀ 𝑦 ∈ ℕ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) ) |
| 24 |
20 23
|
syl |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ↔ ∀ 𝑦 ∈ ℕ ( [,] ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ 𝒫 ℝ ) ) |
| 25 |
19 24
|
mpbird |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ) |
| 26 |
|
iccf |
⊢ [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 27 |
|
ffun |
⊢ ( [,] : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,] ) |
| 28 |
26 27
|
ax-mp |
⊢ Fun [,] |
| 29 |
|
frn |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 30 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 31 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 32 |
30 31
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 33 |
26
|
fdmi |
⊢ dom [,] = ( ℝ* × ℝ* ) |
| 34 |
32 33
|
sseqtrri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ dom [,] |
| 35 |
29 34
|
sstrdi |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran 𝐹 ⊆ dom [,] ) |
| 36 |
|
funimass4 |
⊢ ( ( Fun [,] ∧ ran 𝐹 ⊆ dom [,] ) → ( ( [,] “ ran 𝐹 ) ⊆ 𝒫 ℝ ↔ ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ) ) |
| 37 |
28 35 36
|
sylancr |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( [,] “ ran 𝐹 ) ⊆ 𝒫 ℝ ↔ ∀ 𝑥 ∈ ran 𝐹 ( [,] ‘ 𝑥 ) ∈ 𝒫 ℝ ) ) |
| 38 |
25 37
|
mpbird |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( [,] “ ran 𝐹 ) ⊆ 𝒫 ℝ ) |
| 39 |
1 38
|
eqsstrid |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ran ( [,] ∘ 𝐹 ) ⊆ 𝒫 ℝ ) |
| 40 |
|
sspwuni |
⊢ ( ran ( [,] ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
| 41 |
39 40
|
sylib |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |