Metamath Proof Explorer


Theorem ovolfiniun

Description: The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Assertion ovolfiniun ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝑘𝐴 𝐵 ) ≤ Σ 𝑘𝐴 ( vol* ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 raleq ( 𝑥 = ∅ → ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ ∅ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) )
2 iuneq1 ( 𝑥 = ∅ → 𝑘𝑥 𝐵 = 𝑘 ∈ ∅ 𝐵 )
3 2 fveq2d ( 𝑥 = ∅ → ( vol* ‘ 𝑘𝑥 𝐵 ) = ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) )
4 sumeq1 ( 𝑥 = ∅ → Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) )
5 3 4 breq12d ( 𝑥 = ∅ → ( ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) ) )
6 1 5 imbi12d ( 𝑥 = ∅ → ( ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘 ∈ ∅ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) ) ) )
7 raleq ( 𝑥 = 𝑦 → ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) )
8 iuneq1 ( 𝑥 = 𝑦 𝑘𝑥 𝐵 = 𝑘𝑦 𝐵 )
9 8 fveq2d ( 𝑥 = 𝑦 → ( vol* ‘ 𝑘𝑥 𝐵 ) = ( vol* ‘ 𝑘𝑦 𝐵 ) )
10 sumeq1 ( 𝑥 = 𝑦 → Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) )
11 9 10 breq12d ( 𝑥 = 𝑦 → ( ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) )
12 7 11 imbi12d ( 𝑥 = 𝑦 → ( ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) )
13 raleq ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) )
14 iuneq1 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝑘𝑥 𝐵 = 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 )
15 14 fveq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( vol* ‘ 𝑘𝑥 𝐵 ) = ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) )
16 sumeq1 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) )
17 15 16 breq12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) )
18 13 17 imbi12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) )
19 raleq ( 𝑥 = 𝐴 → ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) )
20 iuneq1 ( 𝑥 = 𝐴 𝑘𝑥 𝐵 = 𝑘𝐴 𝐵 )
21 20 fveq2d ( 𝑥 = 𝐴 → ( vol* ‘ 𝑘𝑥 𝐵 ) = ( vol* ‘ 𝑘𝐴 𝐵 ) )
22 sumeq1 ( 𝑥 = 𝐴 → Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘𝐴 ( vol* ‘ 𝐵 ) )
23 21 22 breq12d ( 𝑥 = 𝐴 → ( ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ 𝑘𝐴 𝐵 ) ≤ Σ 𝑘𝐴 ( vol* ‘ 𝐵 ) ) )
24 19 23 imbi12d ( 𝑥 = 𝐴 → ( ( ∀ 𝑘𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑥 𝐵 ) ≤ Σ 𝑘𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝐴 𝐵 ) ≤ Σ 𝑘𝐴 ( vol* ‘ 𝐵 ) ) ) )
25 0le0 0 ≤ 0
26 0iun 𝑘 ∈ ∅ 𝐵 = ∅
27 26 fveq2i ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) = ( vol* ‘ ∅ )
28 ovol0 ( vol* ‘ ∅ ) = 0
29 27 28 eqtri ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) = 0
30 sum0 Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) = 0
31 25 29 30 3brtr4i ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 )
32 31 a1i ( ∀ 𝑘 ∈ ∅ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) )
33 ssun1 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } )
34 ssralv ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) )
35 33 34 ax-mp ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) )
36 35 imim1i ( ( ∀ 𝑘𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) )
37 simprl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) )
38 nfcsb1v 𝑘 𝑚 / 𝑘 𝐵
39 nfcv 𝑘
40 38 39 nfss 𝑘 𝑚 / 𝑘 𝐵 ⊆ ℝ
41 nfcv 𝑘 vol*
42 41 38 nffv 𝑘 ( vol* ‘ 𝑚 / 𝑘 𝐵 )
43 42 nfel1 𝑘 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ
44 40 43 nfan 𝑘 ( 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
45 csbeq1a ( 𝑘 = 𝑚𝐵 = 𝑚 / 𝑘 𝐵 )
46 45 sseq1d ( 𝑘 = 𝑚 → ( 𝐵 ⊆ ℝ ↔ 𝑚 / 𝑘 𝐵 ⊆ ℝ ) )
47 45 fveq2d ( 𝑘 = 𝑚 → ( vol* ‘ 𝐵 ) = ( vol* ‘ 𝑚 / 𝑘 𝐵 ) )
48 47 eleq1d ( 𝑘 = 𝑚 → ( ( vol* ‘ 𝐵 ) ∈ ℝ ↔ ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ ) )
49 46 48 anbi12d ( 𝑘 = 𝑚 → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ( 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ ) ) )
50 44 49 rspc ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ ) ) )
51 37 50 mpan9 ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ ) )
52 51 simpld ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑚 / 𝑘 𝐵 ⊆ ℝ )
53 52 ralrimiva ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ⊆ ℝ )
54 iunss ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ⊆ ℝ ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ⊆ ℝ )
55 53 54 sylibr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ⊆ ℝ )
56 iunss1 ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 )
57 33 56 ax-mp 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵
58 57 55 sstrid ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → 𝑚𝑦 𝑚 / 𝑘 𝐵 ⊆ ℝ )
59 simpll ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → 𝑦 ∈ Fin )
60 elun1 ( 𝑚𝑦𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) )
61 51 simprd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
62 60 61 sylan2 ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚𝑦 ) → ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
63 59 62 fsumrecl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
64 simprr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) )
65 nfcv 𝑚 𝐵
66 65 38 45 cbviun 𝑘𝑦 𝐵 = 𝑚𝑦 𝑚 / 𝑘 𝐵
67 66 fveq2i ( vol* ‘ 𝑘𝑦 𝐵 ) = ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 )
68 nfcv 𝑚 ( vol* ‘ 𝐵 )
69 68 42 47 cbvsumi Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) = Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 )
70 64 67 69 3brtr3g ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) ≤ Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) )
71 ovollecl ( ( 𝑚𝑦 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ ∧ ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) ≤ Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ) → ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
72 58 63 70 71 syl3anc ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
73 ssun2 { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } )
74 vsnid 𝑧 ∈ { 𝑧 }
75 73 74 sselii 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } )
76 nfcsb1v 𝑘 𝑧 / 𝑘 𝐵
77 76 39 nfss 𝑘 𝑧 / 𝑘 𝐵 ⊆ ℝ
78 41 76 nffv 𝑘 ( vol* ‘ 𝑧 / 𝑘 𝐵 )
79 78 nfel1 𝑘 ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ
80 77 79 nfan 𝑘 ( 𝑧 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ )
81 csbeq1a ( 𝑘 = 𝑧𝐵 = 𝑧 / 𝑘 𝐵 )
82 81 sseq1d ( 𝑘 = 𝑧 → ( 𝐵 ⊆ ℝ ↔ 𝑧 / 𝑘 𝐵 ⊆ ℝ ) )
83 81 fveq2d ( 𝑘 = 𝑧 → ( vol* ‘ 𝐵 ) = ( vol* ‘ 𝑧 / 𝑘 𝐵 ) )
84 83 eleq1d ( 𝑘 = 𝑧 → ( ( vol* ‘ 𝐵 ) ∈ ℝ ↔ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ ) )
85 82 84 anbi12d ( 𝑘 = 𝑧 → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ( 𝑧 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ ) ) )
86 80 85 rspc ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( 𝑧 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ ) ) )
87 75 37 86 mpsyl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑧 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ ) )
88 87 simprd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ )
89 72 88 readdcld ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) ∈ ℝ )
90 iunxun 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 = ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑚 ∈ { 𝑧 } 𝑚 / 𝑘 𝐵 )
91 vex 𝑧 ∈ V
92 csbeq1 ( 𝑚 = 𝑧 𝑚 / 𝑘 𝐵 = 𝑧 / 𝑘 𝐵 )
93 91 92 iunxsn 𝑚 ∈ { 𝑧 } 𝑚 / 𝑘 𝐵 = 𝑧 / 𝑘 𝐵
94 93 uneq2i ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑚 ∈ { 𝑧 } 𝑚 / 𝑘 𝐵 ) = ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑧 / 𝑘 𝐵 )
95 90 94 eqtri 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 = ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑧 / 𝑘 𝐵 )
96 95 fveq2i ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ) = ( vol* ‘ ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑧 / 𝑘 𝐵 ) )
97 ovolun ( ( ( 𝑚𝑦 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) ∈ ℝ ) ∧ ( 𝑧 / 𝑘 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑧 / 𝑘 𝐵 ) ) ≤ ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) )
98 58 72 87 97 syl21anc ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ( 𝑚𝑦 𝑚 / 𝑘 𝐵 𝑧 / 𝑘 𝐵 ) ) ≤ ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) )
99 96 98 eqbrtrid ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ) ≤ ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) )
100 ovollecl ( ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ⊆ ℝ ∧ ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ) ≤ ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) ) → ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
101 55 89 99 100 syl3anc ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
102 snfi { 𝑧 } ∈ Fin
103 unfi ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
104 102 103 mpan2 ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
105 104 ad2antrr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
106 105 61 fsumrecl ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℝ )
107 72 63 88 70 leadd1dd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) ≤ ( Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) )
108 simplr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ¬ 𝑧𝑦 )
109 disjsn ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧𝑦 )
110 108 109 sylibr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ )
111 eqidd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) )
112 61 recnd ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ∈ ℂ )
113 110 111 105 112 fsumsplit ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝑚 / 𝑘 𝐵 ) = ( Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) + Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ) )
114 88 recnd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℂ )
115 92 fveq2d ( 𝑚 = 𝑧 → ( vol* ‘ 𝑚 / 𝑘 𝐵 ) = ( vol* ‘ 𝑧 / 𝑘 𝐵 ) )
116 115 sumsn ( ( 𝑧 ∈ V ∧ ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ 𝑚 / 𝑘 𝐵 ) = ( vol* ‘ 𝑧 / 𝑘 𝐵 ) )
117 91 114 116 sylancr ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ 𝑚 / 𝑘 𝐵 ) = ( vol* ‘ 𝑧 / 𝑘 𝐵 ) )
118 117 oveq2d ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) + Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ 𝑚 / 𝑘 𝐵 ) ) = ( Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) )
119 113 118 eqtrd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝑚 / 𝑘 𝐵 ) = ( Σ 𝑚𝑦 ( vol* ‘ 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) )
120 107 119 breqtrrd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ( vol* ‘ 𝑚𝑦 𝑚 / 𝑘 𝐵 ) + ( vol* ‘ 𝑧 / 𝑘 𝐵 ) ) ≤ Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝑚 / 𝑘 𝐵 ) )
121 101 89 106 99 120 letrd ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 ) ≤ Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝑚 / 𝑘 𝐵 ) )
122 65 38 45 cbviun 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵
123 122 fveq2i ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( vol* ‘ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑚 / 𝑘 𝐵 )
124 68 42 47 cbvsumi Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) = Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝑚 / 𝑘 𝐵 )
125 121 123 124 3brtr4g ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) )
126 125 exp32 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) → ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) )
127 126 a2d ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) )
128 36 127 syl5 ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ∀ 𝑘𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝑦 𝐵 ) ≤ Σ 𝑘𝑦 ( vol* ‘ 𝐵 ) ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) )
129 6 12 18 24 32 128 findcard2s ( 𝐴 ∈ Fin → ( ∀ 𝑘𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝑘𝐴 𝐵 ) ≤ Σ 𝑘𝐴 ( vol* ‘ 𝐵 ) ) )
130 129 imp ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝑘𝐴 𝐵 ) ≤ Σ 𝑘𝐴 ( vol* ‘ 𝐵 ) )