Step |
Hyp |
Ref |
Expression |
1 |
|
ovolgelb.1 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
4 |
2 3
|
ltaddrpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) |
5 |
3
|
rpred |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
6 |
2 5
|
readdcld |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ ) |
7 |
2 6
|
ltnled |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( vol* ‘ 𝐴 ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) ↔ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ) ) |
8 |
4 7
|
mpbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ) |
9 |
|
eqid |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } |
10 |
9
|
ovolval |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
12 |
11
|
breq2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ↔ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) ) |
13 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ ℝ* |
14 |
6
|
rexrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) |
15 |
|
infxrgelb |
⊢ ( ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
16 |
13 14 15
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
17 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ↔ 𝑥 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) ) |
18 |
1
|
rneqi |
⊢ ran 𝑆 = ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
19 |
18
|
supeq1i |
⊢ sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) |
20 |
19
|
eqeq2i |
⊢ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ↔ 𝑥 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) |
21 |
17 20
|
bitr4di |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ↔ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) ) |
22 |
21
|
anbi2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
23 |
22
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) ↔ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
24 |
23
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
25 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
26 |
|
r19.23v |
⊢ ( ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
27 |
26
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
28 |
|
ancomst |
⊢ ( ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) |
29 |
|
impexp |
⊢ ( ( ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ) |
30 |
28 29
|
bitri |
⊢ ( ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ) |
31 |
30
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ* ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ) |
32 |
|
elovolmlem |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
33 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝑔 ) = ( ( abs ∘ − ) ∘ 𝑔 ) |
34 |
33 1
|
ovolsf |
⊢ ( 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
35 |
32 34
|
sylbi |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
36 |
35
|
frnd |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
37 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
38 |
36 37
|
sstrdi |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ran 𝑆 ⊆ ℝ* ) |
39 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
40 |
38 39
|
syl |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
41 |
|
breq2 |
⊢ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ↔ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
42 |
41
|
imbi2d |
⊢ ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
43 |
42
|
ceqsralv |
⊢ ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ* ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
44 |
40 43
|
syl |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ∀ 𝑥 ∈ ℝ* ( 𝑥 = sup ( ran 𝑆 , ℝ* , < ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
45 |
31 44
|
syl5bb |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
46 |
45
|
ralbiia |
⊢ ( ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∀ 𝑥 ∈ ℝ* ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
47 |
25 27 46
|
3bitr3i |
⊢ ( ∀ 𝑥 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑥 = sup ( ran 𝑆 , ℝ* , < ) ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
48 |
24 47
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ 𝑥 ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
49 |
16 48
|
bitr2di |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ↔ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) ) |
50 |
12 49
|
bitr4d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ ( vol* ‘ 𝐴 ) ↔ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) ) |
51 |
8 50
|
mtbid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ¬ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
52 |
|
rexanali |
⊢ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ↔ ¬ ∀ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) → ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
53 |
51 52
|
sylibr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
54 |
|
xrltnle |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) ↔ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
55 |
|
xrltle |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) < ( ( vol* ‘ 𝐴 ) + 𝐵 ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |
56 |
54 55
|
sylbird |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ∈ ℝ* ) → ( ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |
57 |
40 14 56
|
syl2anr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |
58 |
57
|
anim2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) ) |
59 |
58
|
reximdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ ¬ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) ) |
60 |
53 59
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + 𝐵 ) ) ) |