Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ovolicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ovolicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
ovolicc1.4 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
5 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
7 |
|
ovolcl |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) |
9 |
|
df-br |
⊢ ( 𝐴 ≤ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≤ ) |
10 |
3 9
|
sylib |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ≤ ) |
11 |
1 2
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
12 |
10 11
|
elind |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
14 |
|
0le0 |
⊢ 0 ≤ 0 |
15 |
|
df-br |
⊢ ( 0 ≤ 0 ↔ 〈 0 , 0 〉 ∈ ≤ ) |
16 |
14 15
|
mpbi |
⊢ 〈 0 , 0 〉 ∈ ≤ |
17 |
|
0re |
⊢ 0 ∈ ℝ |
18 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
19 |
17 17 18
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
20 |
16 19
|
elini |
⊢ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) |
21 |
|
ifcl |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
22 |
13 20 21
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
23 |
22 4
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
24 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
25 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
26 |
24 25
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
27 |
23 26
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
28 |
27
|
frnd |
⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ( 0 [,) +∞ ) ) |
29 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
30 |
28 29
|
sstrdi |
⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ) |
31 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* ) |
32 |
30 31
|
syl |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* ) |
33 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
34 |
33
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
35 |
|
1nn |
⊢ 1 ∈ ℕ |
36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℕ ) |
37 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
38 |
1 2 37
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
40 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
41 |
1 2 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
42 |
41
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
43 |
42
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
44 |
39 43
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ) |
45 |
42
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
46 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
47 |
1 2 46
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
49 |
45 48
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
50 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 1 ) ) |
51 |
|
iftrue |
⊢ ( 𝑛 = 1 → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
52 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
53 |
51 4 52
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐺 ‘ 1 ) = 〈 𝐴 , 𝐵 〉 ) |
54 |
35 53
|
ax-mp |
⊢ ( 𝐺 ‘ 1 ) = 〈 𝐴 , 𝐵 〉 |
55 |
50 54
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = 〈 𝐴 , 𝐵 〉 ) |
56 |
55
|
fveq2d |
⊢ ( 𝑛 = 1 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
57 |
56
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ) ) |
58 |
55
|
fveq2d |
⊢ ( 𝑛 = 1 → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
59 |
58
|
breq2d |
⊢ ( 𝑛 = 1 → ( 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
60 |
57 59
|
anbi12d |
⊢ ( 𝑛 = 1 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
61 |
60
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
62 |
36 44 49 61
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
63 |
62
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
64 |
|
ovolficc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
65 |
6 23 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
66 |
63 65
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
67 |
25
|
ovollb2 |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ) |
68 |
23 66 67
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ) |
69 |
|
addid1 |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 0 ) = 𝑘 ) |
70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ℂ ) → ( 𝑘 + 0 ) = 𝑘 ) |
71 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
72 |
35 71
|
eleqtri |
⊢ 1 ∈ ( ℤ≥ ‘ 1 ) |
73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 1 ∈ ( ℤ≥ ‘ 1 ) ) |
74 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) |
75 |
74 71
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
76 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
77 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
78 |
|
ffvelrn |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
79 |
77 35 78
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
80 |
76 79
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ℝ ) |
81 |
80
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ℂ ) |
82 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
83 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
84 |
83
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
85 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
86 |
85
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
87 |
84 86
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
88 |
|
eluz2nn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℕ ) |
89 |
87 88
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ℕ ) |
90 |
24
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
91 |
82 89 90
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
92 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 = 1 ↔ 𝑘 = 1 ) ) |
93 |
92
|
ifbid |
⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
94 |
|
opex |
⊢ 〈 0 , 0 〉 ∈ V |
95 |
52 94
|
ifex |
⊢ if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ V |
96 |
93 4 95
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
97 |
89 96
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
98 |
|
eluz2b3 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≠ 1 ) ) |
99 |
98
|
simprbi |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ≠ 1 ) |
100 |
87 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ≠ 1 ) |
101 |
100
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ¬ 𝑘 = 1 ) |
102 |
101
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = 〈 0 , 0 〉 ) |
103 |
97 102
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 𝐺 ‘ 𝑘 ) = 〈 0 , 0 〉 ) |
104 |
103
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 2nd ‘ 〈 0 , 0 〉 ) ) |
105 |
|
c0ex |
⊢ 0 ∈ V |
106 |
105 105
|
op2nd |
⊢ ( 2nd ‘ 〈 0 , 0 〉 ) = 0 |
107 |
104 106
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
108 |
103
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 1st ‘ 〈 0 , 0 〉 ) ) |
109 |
105 105
|
op1st |
⊢ ( 1st ‘ 〈 0 , 0 〉 ) = 0 |
110 |
108 109
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
111 |
107 110
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( 0 − 0 ) ) |
112 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
113 |
111 112
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) = 0 ) |
114 |
91 113
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = 0 ) |
115 |
70 73 75 81 114
|
seqid2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ) |
116 |
|
1z |
⊢ 1 ∈ ℤ |
117 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
118 |
24
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
119 |
117 35 118
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
120 |
54
|
fveq2i |
⊢ ( 2nd ‘ ( 𝐺 ‘ 1 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) |
121 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
122 |
120 121
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 1 ) ) = 𝐵 ) |
123 |
54
|
fveq2i |
⊢ ( 1st ‘ ( 𝐺 ‘ 1 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) |
124 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
125 |
123 124
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 1 ) ) = 𝐴 ) |
126 |
122 125
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) = ( 𝐵 − 𝐴 ) ) |
127 |
119 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( 𝐵 − 𝐴 ) ) |
128 |
116 127
|
seq1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( 𝐵 − 𝐴 ) ) |
129 |
115 128
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) = ( 𝐵 − 𝐴 ) ) |
130 |
33
|
leidd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
132 |
129 131
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) |
133 |
132
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) |
134 |
27
|
ffnd |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ ) |
135 |
|
breq1 |
⊢ ( 𝑧 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) → ( 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
136 |
135
|
ralrn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
137 |
134 136
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
138 |
133 137
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) |
139 |
|
supxrleub |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ∧ ( 𝐵 − 𝐴 ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) ) |
140 |
30 34 139
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) ) |
141 |
138 140
|
mpbird |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ) |
142 |
8 32 34 68 141
|
xrletrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ ( 𝐵 − 𝐴 ) ) |