| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ovolicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ovolicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
ovolicc1.4 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 5 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 7 |
|
ovolcl |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) |
| 9 |
|
df-br |
⊢ ( 𝐴 ≤ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ≤ ) |
| 10 |
3 9
|
sylib |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ≤ ) |
| 11 |
1 2
|
opelxpd |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
| 12 |
10 11
|
elind |
⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 14 |
|
0le0 |
⊢ 0 ≤ 0 |
| 15 |
|
df-br |
⊢ ( 0 ≤ 0 ↔ 〈 0 , 0 〉 ∈ ≤ ) |
| 16 |
14 15
|
mpbi |
⊢ 〈 0 , 0 〉 ∈ ≤ |
| 17 |
|
0re |
⊢ 0 ∈ ℝ |
| 18 |
|
opelxpi |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) |
| 19 |
17 17 18
|
mp2an |
⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
| 20 |
16 19
|
elini |
⊢ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) |
| 21 |
|
ifcl |
⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 22 |
13 20 21
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 23 |
22 4
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 24 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
| 25 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
| 26 |
24 25
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 27 |
23 26
|
syl |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 28 |
27
|
frnd |
⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ( 0 [,) +∞ ) ) |
| 29 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 30 |
28 29
|
sstrdi |
⊢ ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ) |
| 31 |
|
supxrcl |
⊢ ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* ) |
| 33 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 34 |
33
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 35 |
|
1nn |
⊢ 1 ∈ ℕ |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℕ ) |
| 37 |
|
op1stg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 38 |
1 2 37
|
syl2anc |
⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 40 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 41 |
1 2 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 42 |
41
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 43 |
42
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
| 44 |
39 43
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ) |
| 45 |
42
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 46 |
|
op2ndg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 47 |
1 2 46
|
syl2anc |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 49 |
45 48
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 50 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 1 ) ) |
| 51 |
|
iftrue |
⊢ ( 𝑛 = 1 → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = 〈 𝐴 , 𝐵 〉 ) |
| 52 |
|
opex |
⊢ 〈 𝐴 , 𝐵 〉 ∈ V |
| 53 |
51 4 52
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐺 ‘ 1 ) = 〈 𝐴 , 𝐵 〉 ) |
| 54 |
35 53
|
ax-mp |
⊢ ( 𝐺 ‘ 1 ) = 〈 𝐴 , 𝐵 〉 |
| 55 |
50 54
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( 𝐺 ‘ 𝑛 ) = 〈 𝐴 , 𝐵 〉 ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑛 = 1 → ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 57 |
56
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ) ) |
| 58 |
55
|
fveq2d |
⊢ ( 𝑛 = 1 → ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 59 |
58
|
breq2d |
⊢ ( 𝑛 = 1 → ( 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ↔ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 60 |
57 59
|
anbi12d |
⊢ ( 𝑛 = 1 → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ↔ ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) ) |
| 61 |
60
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 62 |
36 44 49 61
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 63 |
62
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 64 |
|
ovolficc |
⊢ ( ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 65 |
6 23 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ↔ ∀ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑥 ≤ ( 2nd ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 66 |
63 65
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 67 |
25
|
ovollb2 |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ) |
| 68 |
23 66 67
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ) |
| 69 |
|
addrid |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 + 0 ) = 𝑘 ) |
| 70 |
69
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ℂ ) → ( 𝑘 + 0 ) = 𝑘 ) |
| 71 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 72 |
35 71
|
eleqtri |
⊢ 1 ∈ ( ℤ≥ ‘ 1 ) |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 1 ∈ ( ℤ≥ ‘ 1 ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) |
| 75 |
74 71
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 76 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 77 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 78 |
|
ffvelcdm |
⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ 1 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 79 |
77 35 78
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ( 0 [,) +∞ ) ) |
| 80 |
76 79
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ℝ ) |
| 81 |
80
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) ∈ ℂ ) |
| 82 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 83 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 84 |
83
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 85 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 86 |
85
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 87 |
84 86
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 88 |
|
eluz2nn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℕ ) |
| 89 |
87 88
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ∈ ℕ ) |
| 90 |
24
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 91 |
82 89 90
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 92 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 = 1 ↔ 𝑘 = 1 ) ) |
| 93 |
92
|
ifbid |
⊢ ( 𝑛 = 𝑘 → if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 94 |
|
opex |
⊢ 〈 0 , 0 〉 ∈ V |
| 95 |
52 94
|
ifex |
⊢ if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ∈ V |
| 96 |
93 4 95
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 97 |
89 96
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 98 |
|
eluz2b3 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≠ 1 ) ) |
| 99 |
98
|
simprbi |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ≠ 1 ) |
| 100 |
87 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → 𝑘 ≠ 1 ) |
| 101 |
100
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ¬ 𝑘 = 1 ) |
| 102 |
101
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → if ( 𝑘 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = 〈 0 , 0 〉 ) |
| 103 |
97 102
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 𝐺 ‘ 𝑘 ) = 〈 0 , 0 〉 ) |
| 104 |
103
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 2nd ‘ 〈 0 , 0 〉 ) ) |
| 105 |
|
c0ex |
⊢ 0 ∈ V |
| 106 |
105 105
|
op2nd |
⊢ ( 2nd ‘ 〈 0 , 0 〉 ) = 0 |
| 107 |
104 106
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
| 108 |
103
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 1st ‘ 〈 0 , 0 〉 ) ) |
| 109 |
105 105
|
op1st |
⊢ ( 1st ‘ 〈 0 , 0 〉 ) = 0 |
| 110 |
108 109
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) = 0 ) |
| 111 |
107 110
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) = ( 0 − 0 ) ) |
| 112 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 113 |
111 112
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝑘 ) ) ) = 0 ) |
| 114 |
91 113
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... 𝑥 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑘 ) = 0 ) |
| 115 |
70 73 75 81 114
|
seqid2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ) |
| 116 |
|
1z |
⊢ 1 ∈ ℤ |
| 117 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 118 |
24
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 119 |
117 35 118
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
| 120 |
54
|
fveq2i |
⊢ ( 2nd ‘ ( 𝐺 ‘ 1 ) ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) |
| 121 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 122 |
120 121
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 1 ) ) = 𝐵 ) |
| 123 |
54
|
fveq2i |
⊢ ( 1st ‘ ( 𝐺 ‘ 1 ) ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) |
| 124 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 125 |
123 124
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 1 ) ) = 𝐴 ) |
| 126 |
122 125
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) = ( 𝐵 − 𝐴 ) ) |
| 127 |
119 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( 𝐵 − 𝐴 ) ) |
| 128 |
116 127
|
seq1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( 𝐵 − 𝐴 ) ) |
| 129 |
115 128
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) = ( 𝐵 − 𝐴 ) ) |
| 130 |
33
|
leidd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 132 |
129 131
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 133 |
132
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) |
| 134 |
27
|
ffnd |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ ) |
| 135 |
|
breq1 |
⊢ ( 𝑧 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) → ( 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
| 136 |
135
|
ralrn |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
| 137 |
134 136
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑥 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑥 ) ≤ ( 𝐵 − 𝐴 ) ) ) |
| 138 |
133 137
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) |
| 139 |
|
supxrleub |
⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ∧ ( 𝐵 − 𝐴 ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) ) |
| 140 |
30 34 139
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ↔ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑧 ≤ ( 𝐵 − 𝐴 ) ) ) |
| 141 |
138 140
|
mpbird |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( 𝐵 − 𝐴 ) ) |
| 142 |
8 32 34 68 141
|
xrletrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ ( 𝐵 − 𝐴 ) ) |