| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolicc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ovolicc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ovolicc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | ovolicc1.4 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 ) ) | 
						
							| 5 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 7 |  | ovolcl | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ℝ  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  ∈  ℝ* ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  ∈  ℝ* ) | 
						
							| 9 |  | df-br | ⊢ ( 𝐴  ≤  𝐵  ↔  〈 𝐴 ,  𝐵 〉  ∈   ≤  ) | 
						
							| 10 | 3 9 | sylib | ⊢ ( 𝜑  →  〈 𝐴 ,  𝐵 〉  ∈   ≤  ) | 
						
							| 11 | 1 2 | opelxpd | ⊢ ( 𝜑  →  〈 𝐴 ,  𝐵 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 12 | 10 11 | elind | ⊢ ( 𝜑  →  〈 𝐴 ,  𝐵 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  〈 𝐴 ,  𝐵 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 14 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 15 |  | df-br | ⊢ ( 0  ≤  0  ↔  〈 0 ,  0 〉  ∈   ≤  ) | 
						
							| 16 | 14 15 | mpbi | ⊢ 〈 0 ,  0 〉  ∈   ≤ | 
						
							| 17 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 18 |  | opelxpi | ⊢ ( ( 0  ∈  ℝ  ∧  0  ∈  ℝ )  →  〈 0 ,  0 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 19 | 17 17 18 | mp2an | ⊢ 〈 0 ,  0 〉  ∈  ( ℝ  ×  ℝ ) | 
						
							| 20 | 16 19 | elini | ⊢ 〈 0 ,  0 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) | 
						
							| 21 |  | ifcl | ⊢ ( ( 〈 𝐴 ,  𝐵 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  〈 0 ,  0 〉  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  if ( 𝑛  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 22 | 13 20 21 | sylancl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  if ( 𝑛  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 23 | 22 4 | fmptd | ⊢ ( 𝜑  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐺 )  =  ( ( abs  ∘   −  )  ∘  𝐺 ) | 
						
							| 25 |  | eqid | ⊢ seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) | 
						
							| 26 | 24 25 | ovolsf | ⊢ ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 27 | 23 26 | syl | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 28 | 27 | frnd | ⊢ ( 𝜑  →  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 29 |  | icossxr | ⊢ ( 0 [,) +∞ )  ⊆  ℝ* | 
						
							| 30 | 28 29 | sstrdi | ⊢ ( 𝜑  →  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  ⊆  ℝ* ) | 
						
							| 31 |  | supxrcl | ⊢ ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  ⊆  ℝ*  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 33 | 2 1 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 34 | 33 | rexrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ* ) | 
						
							| 35 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  1  ∈  ℕ ) | 
						
							| 37 |  | op1stg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 38 | 1 2 37 | syl2anc | ⊢ ( 𝜑  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 40 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 41 | 1 2 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 42 | 41 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 43 | 42 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 44 | 39 43 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  ≤  𝑥 ) | 
						
							| 45 | 42 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 46 |  | op2ndg | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 47 | 1 2 46 | syl2anc | ⊢ ( 𝜑  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 49 | 45 48 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑛  =  1  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 51 |  | iftrue | ⊢ ( 𝑛  =  1  →  if ( 𝑛  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 )  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 52 |  | opex | ⊢ 〈 𝐴 ,  𝐵 〉  ∈  V | 
						
							| 53 | 51 4 52 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( 𝐺 ‘ 1 )  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 54 | 35 53 | ax-mp | ⊢ ( 𝐺 ‘ 1 )  =  〈 𝐴 ,  𝐵 〉 | 
						
							| 55 | 50 54 | eqtrdi | ⊢ ( 𝑛  =  1  →  ( 𝐺 ‘ 𝑛 )  =  〈 𝐴 ,  𝐵 〉 ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( 𝑛  =  1  →  ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 57 | 56 | breq1d | ⊢ ( 𝑛  =  1  →  ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ↔  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  ≤  𝑥 ) ) | 
						
							| 58 | 55 | fveq2d | ⊢ ( 𝑛  =  1  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  =  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) | 
						
							| 59 | 58 | breq2d | ⊢ ( 𝑛  =  1  →  ( 𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) )  ↔  𝑥  ≤  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) | 
						
							| 60 | 57 59 | anbi12d | ⊢ ( 𝑛  =  1  →  ( ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) )  ↔  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) ) ) | 
						
							| 61 | 60 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  ( ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) ) )  →  ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 62 | 36 44 49 61 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 63 | 62 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 64 |  | ovolficc | ⊢ ( ( ( 𝐴 [,] 𝐵 )  ⊆  ℝ  ∧  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) )  →  ( ( 𝐴 [,] 𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 )  ↔  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 65 | 6 23 64 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 )  ↔  ∀ 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ∃ 𝑛  ∈  ℕ ( ( 1st  ‘ ( 𝐺 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑥  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 66 | 63 65 | mpbird | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 ) ) | 
						
							| 67 | 25 | ovollb2 | ⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ∪  ran  ( [,]  ∘  𝐺 ) )  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  ≤  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 68 | 23 66 67 | syl2anc | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  ≤  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  ) ) | 
						
							| 69 |  | addrid | ⊢ ( 𝑘  ∈  ℂ  →  ( 𝑘  +  0 )  =  𝑘 ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ℂ )  →  ( 𝑘  +  0 )  =  𝑘 ) | 
						
							| 71 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 72 | 35 71 | eleqtri | ⊢ 1  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 73 | 72 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  1  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 74 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  𝑥  ∈  ℕ ) | 
						
							| 75 | 74 71 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  𝑥  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 76 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 77 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 78 |  | ffvelcdm | ⊢ ( ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ )  ∧  1  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 1 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 79 | 77 35 78 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 1 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 80 | 76 79 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 1 )  ∈  ℝ ) | 
						
							| 81 | 80 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 1 )  ∈  ℂ ) | 
						
							| 82 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 83 |  | elfzuz | ⊢ ( 𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  𝑘  ∈  ( ℤ≥ ‘ ( 1  +  1 ) ) ) | 
						
							| 85 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 86 | 85 | fveq2i | ⊢ ( ℤ≥ ‘ 2 )  =  ( ℤ≥ ‘ ( 1  +  1 ) ) | 
						
							| 87 | 84 86 | eleqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 88 |  | eluz2nn | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  𝑘  ∈  ℕ ) | 
						
							| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 90 | 24 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑘 )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 91 | 82 89 90 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑘 )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 92 |  | eqeq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛  =  1  ↔  𝑘  =  1 ) ) | 
						
							| 93 | 92 | ifbid | ⊢ ( 𝑛  =  𝑘  →  if ( 𝑛  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 )  =  if ( 𝑘  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 ) ) | 
						
							| 94 |  | opex | ⊢ 〈 0 ,  0 〉  ∈  V | 
						
							| 95 | 52 94 | ifex | ⊢ if ( 𝑘  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 )  ∈  V | 
						
							| 96 | 93 4 95 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  if ( 𝑘  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 ) ) | 
						
							| 97 | 89 96 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( 𝐺 ‘ 𝑘 )  =  if ( 𝑘  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 ) ) | 
						
							| 98 |  | eluz2b3 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑘  ∈  ℕ  ∧  𝑘  ≠  1 ) ) | 
						
							| 99 | 98 | simprbi | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  𝑘  ≠  1 ) | 
						
							| 100 | 87 99 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  𝑘  ≠  1 ) | 
						
							| 101 | 100 | neneqd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ¬  𝑘  =  1 ) | 
						
							| 102 | 101 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  if ( 𝑘  =  1 ,  〈 𝐴 ,  𝐵 〉 ,  〈 0 ,  0 〉 )  =  〈 0 ,  0 〉 ) | 
						
							| 103 | 97 102 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( 𝐺 ‘ 𝑘 )  =  〈 0 ,  0 〉 ) | 
						
							| 104 | 103 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑘 ) )  =  ( 2nd  ‘ 〈 0 ,  0 〉 ) ) | 
						
							| 105 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 106 | 105 105 | op2nd | ⊢ ( 2nd  ‘ 〈 0 ,  0 〉 )  =  0 | 
						
							| 107 | 104 106 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑘 ) )  =  0 ) | 
						
							| 108 | 103 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑘 ) )  =  ( 1st  ‘ 〈 0 ,  0 〉 ) ) | 
						
							| 109 | 105 105 | op1st | ⊢ ( 1st  ‘ 〈 0 ,  0 〉 )  =  0 | 
						
							| 110 | 108 109 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑘 ) )  =  0 ) | 
						
							| 111 | 107 110 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑘 ) ) )  =  ( 0  −  0 ) ) | 
						
							| 112 |  | 0m0e0 | ⊢ ( 0  −  0 )  =  0 | 
						
							| 113 | 111 112 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( ( 2nd  ‘ ( 𝐺 ‘ 𝑘 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 𝑘 ) ) )  =  0 ) | 
						
							| 114 | 91 113 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℕ )  ∧  𝑘  ∈  ( ( 1  +  1 ) ... 𝑥 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 𝑘 )  =  0 ) | 
						
							| 115 | 70 73 75 81 114 | seqid2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 1 )  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 ) ) | 
						
							| 116 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 117 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 118 | 24 | ovolfsval | ⊢ ( ( 𝐺 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  1  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 1 )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 1 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 1 ) ) ) ) | 
						
							| 119 | 117 35 118 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 1 )  =  ( ( 2nd  ‘ ( 𝐺 ‘ 1 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 1 ) ) ) ) | 
						
							| 120 | 54 | fveq2i | ⊢ ( 2nd  ‘ ( 𝐺 ‘ 1 ) )  =  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 ) | 
						
							| 121 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 2nd  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐵 ) | 
						
							| 122 | 120 121 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐺 ‘ 1 ) )  =  𝐵 ) | 
						
							| 123 | 54 | fveq2i | ⊢ ( 1st  ‘ ( 𝐺 ‘ 1 ) )  =  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 ) | 
						
							| 124 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 1st  ‘ 〈 𝐴 ,  𝐵 〉 )  =  𝐴 ) | 
						
							| 125 | 123 124 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 1st  ‘ ( 𝐺 ‘ 1 ) )  =  𝐴 ) | 
						
							| 126 | 122 125 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( ( 2nd  ‘ ( 𝐺 ‘ 1 ) )  −  ( 1st  ‘ ( 𝐺 ‘ 1 ) ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 127 | 119 126 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐺 ) ‘ 1 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 128 | 116 127 | seq1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 1 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 129 | 115 128 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 130 | 33 | leidd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( 𝐵  −  𝐴 )  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 132 | 129 131 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℕ )  →  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 133 | 132 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℕ ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 134 | 27 | ffnd | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  Fn  ℕ ) | 
						
							| 135 |  | breq1 | ⊢ ( 𝑧  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  →  ( 𝑧  ≤  ( 𝐵  −  𝐴 )  ↔  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  ≤  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 136 | 135 | ralrn | ⊢ ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) 𝑧  ≤  ( 𝐵  −  𝐴 )  ↔  ∀ 𝑥  ∈  ℕ ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  ≤  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 137 | 134 136 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) 𝑧  ≤  ( 𝐵  −  𝐴 )  ↔  ∀ 𝑥  ∈  ℕ ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ‘ 𝑥 )  ≤  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 138 | 133 137 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) 𝑧  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 139 |  | supxrleub | ⊢ ( ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) )  ⊆  ℝ*  ∧  ( 𝐵  −  𝐴 )  ∈  ℝ* )  →  ( sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  )  ≤  ( 𝐵  −  𝐴 )  ↔  ∀ 𝑧  ∈  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) 𝑧  ≤  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 140 | 30 34 139 | syl2anc | ⊢ ( 𝜑  →  ( sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  )  ≤  ( 𝐵  −  𝐴 )  ↔  ∀ 𝑧  ∈  ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) 𝑧  ≤  ( 𝐵  −  𝐴 ) ) ) | 
						
							| 141 | 138 140 | mpbird | ⊢ ( 𝜑  →  sup ( ran  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐺 ) ) ,  ℝ* ,   <  )  ≤  ( 𝐵  −  𝐴 ) ) | 
						
							| 142 | 8 32 34 68 141 | xrletrd | ⊢ ( 𝜑  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  ≤  ( 𝐵  −  𝐴 ) ) |