Metamath Proof Explorer


Theorem ovolicc2

Description: The measure of a closed interval is upper bounded by its length. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 ( 𝜑𝐴 ∈ ℝ )
ovolicc.2 ( 𝜑𝐵 ∈ ℝ )
ovolicc.3 ( 𝜑𝐴𝐵 )
ovolicc2.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
Assertion ovolicc2 ( 𝜑 → ( 𝐵𝐴 ) ≤ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ovolicc.1 ( 𝜑𝐴 ∈ ℝ )
2 ovolicc.2 ( 𝜑𝐵 ∈ ℝ )
3 ovolicc.3 ( 𝜑𝐴𝐵 )
4 ovolicc2.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
5 4 elovolm ( 𝑧𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
6 simprr ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) )
7 unieq ( 𝑢 = ran ( (,) ∘ 𝑓 ) → 𝑢 = ran ( (,) ∘ 𝑓 ) )
8 7 sseq2d ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 ↔ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) )
9 pweq ( 𝑢 = ran ( (,) ∘ 𝑓 ) → 𝒫 𝑢 = 𝒫 ran ( (,) ∘ 𝑓 ) )
10 9 ineq1d ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( 𝒫 𝑢 ∩ Fin ) = ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) )
11 10 rexeqdv ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) )
12 8 11 imbi12d ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ↔ ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) )
13 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
14 eqid ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) )
15 13 14 icccmp ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp )
16 1 2 15 syl2anc ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp )
17 retop ( topGen ‘ ran (,) ) ∈ Top
18 iccssre ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
19 1 2 18 syl2anc ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ )
20 uniretop ℝ = ( topGen ‘ ran (,) )
21 20 cmpsub ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) )
22 17 19 21 sylancr ( 𝜑 → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) )
23 16 22 mpbid ( 𝜑 → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) )
24 23 adantr ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) )
25 ioof (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ
26 ffn ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) )
27 25 26 ax-mp (,) Fn ( ℝ* × ℝ* )
28 dffn3 ( (,) Fn ( ℝ* × ℝ* ) ↔ (,) : ( ℝ* × ℝ* ) ⟶ ran (,) )
29 27 28 mpbi (,) : ( ℝ* × ℝ* ) ⟶ ran (,)
30 simpr ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
31 elovolmlem ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
32 30 31 sylib ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
33 inss2 ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ )
34 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
35 33 34 sstri ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* )
36 fss ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) )
37 32 35 36 sylancl ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) )
38 fco ( ( (,) : ( ℝ* × ℝ* ) ⟶ ran (,) ∧ 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) )
39 29 37 38 sylancr ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) )
40 39 adantrr ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) )
41 40 frnd ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ran (,) )
42 retopbas ran (,) ∈ TopBases
43 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
44 42 43 ax-mp ran (,) ⊆ ( topGen ‘ ran (,) )
45 41 44 sstrdi ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) )
46 fvex ( topGen ‘ ran (,) ) ∈ V
47 46 elpw2 ( ran ( (,) ∘ 𝑓 ) ∈ 𝒫 ( topGen ‘ ran (,) ) ↔ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) )
48 45 47 sylibr ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ∈ 𝒫 ( topGen ‘ ran (,) ) )
49 12 24 48 rspcdva ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) )
50 6 49 mpd ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 )
51 simprl ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) )
52 elin ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ↔ ( 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 ∈ Fin ) )
53 51 52 sylib ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 ∈ Fin ) )
54 53 simprd ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → 𝑣 ∈ Fin )
55 53 simpld ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) )
56 55 elpwid ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → 𝑣 ⊆ ran ( (,) ∘ 𝑓 ) )
57 56 sseld ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( 𝑡𝑣𝑡 ∈ ran ( (,) ∘ 𝑓 ) ) )
58 39 ffnd ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( (,) ∘ 𝑓 ) Fn ℕ )
59 58 adantr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( (,) ∘ 𝑓 ) Fn ℕ )
60 fvelrnb ( ( (,) ∘ 𝑓 ) Fn ℕ → ( 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ↔ ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) )
61 59 60 syl ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ↔ ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) )
62 57 61 sylibd ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( 𝑡𝑣 → ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) )
63 62 ralrimiv ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ∀ 𝑡𝑣𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 )
64 fveqeq2 ( 𝑘 = ( 𝑔𝑡 ) → ( ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ↔ ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) )
65 64 ac6sfi ( ( 𝑣 ∈ Fin ∧ ∀ 𝑡𝑣𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) → ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) )
66 54 63 65 syl2anc ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) )
67 1 ad2antrr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → 𝐴 ∈ ℝ )
68 2 ad2antrr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → 𝐵 ∈ ℝ )
69 3 ad2antrr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → 𝐴𝐵 )
70 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
71 32 adantr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
72 simprll ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) )
73 simprlr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 )
74 simprrl ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → 𝑔 : 𝑣 ⟶ ℕ )
75 simprrr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 )
76 2fveq3 ( 𝑡 = 𝑥 → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑥 ) ) )
77 id ( 𝑡 = 𝑥𝑡 = 𝑥 )
78 76 77 eqeq12d ( 𝑡 = 𝑥 → ( ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ↔ ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑥 ) ) = 𝑥 ) )
79 78 rspccva ( ( ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡𝑥𝑣 ) → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑥 ) ) = 𝑥 )
80 75 79 sylan ( ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) ∧ 𝑥𝑣 ) → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑥 ) ) = 𝑥 )
81 eqid { 𝑢𝑣 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } = { 𝑢𝑣 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ }
82 67 68 69 70 71 72 73 74 80 81 ovolicc2lem5 ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) ) ) → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
83 82 expr ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
84 83 exlimdv ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔𝑡 ) ) = 𝑡 ) → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
85 66 84 mpd ( ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 ) ) → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
86 85 rexlimdvaa ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
87 86 adantrr ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ( ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ 𝑣 → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
88 50 87 mpd ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
89 breq2 ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( ( 𝐵𝐴 ) ≤ 𝑧 ↔ ( 𝐵𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) )
90 88 89 syl5ibrcom ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵𝐴 ) ≤ 𝑧 ) )
91 90 expr ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵𝐴 ) ≤ 𝑧 ) ) )
92 91 impd ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐵𝐴 ) ≤ 𝑧 ) )
93 92 rexlimdva ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐵𝐴 ) ≤ 𝑧 ) )
94 5 93 syl5bi ( 𝜑 → ( 𝑧𝑀 → ( 𝐵𝐴 ) ≤ 𝑧 ) )
95 94 ralrimiv ( 𝜑 → ∀ 𝑧𝑀 ( 𝐵𝐴 ) ≤ 𝑧 )
96 4 ssrab3 𝑀 ⊆ ℝ*
97 2 1 resubcld ( 𝜑 → ( 𝐵𝐴 ) ∈ ℝ )
98 97 rexrd ( 𝜑 → ( 𝐵𝐴 ) ∈ ℝ* )
99 infxrgelb ( ( 𝑀 ⊆ ℝ* ∧ ( 𝐵𝐴 ) ∈ ℝ* ) → ( ( 𝐵𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ↔ ∀ 𝑧𝑀 ( 𝐵𝐴 ) ≤ 𝑧 ) )
100 96 98 99 sylancr ( 𝜑 → ( ( 𝐵𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ↔ ∀ 𝑧𝑀 ( 𝐵𝐴 ) ≤ 𝑧 ) )
101 95 100 mpbird ( 𝜑 → ( 𝐵𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) )
102 4 ovolval ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = inf ( 𝑀 , ℝ* , < ) )
103 19 102 syl ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = inf ( 𝑀 , ℝ* , < ) )
104 101 103 breqtrrd ( 𝜑 → ( 𝐵𝐴 ) ≤ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) )