| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolicc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ovolicc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ovolicc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | ovolicc2.4 | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 5 |  | ovolicc2.5 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 6 |  | ovolicc2.6 | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝒫  ran  ( (,)  ∘  𝐹 )  ∩  Fin ) ) | 
						
							| 7 |  | ovolicc2.7 | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  𝑈 ) | 
						
							| 8 |  | ovolicc2.8 | ⊢ ( 𝜑  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 9 |  | ovolicc2.9 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑈 )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  𝑡 ) | 
						
							| 10 |  | ovolicc2.10 | ⊢ 𝑇  =  { 𝑢  ∈  𝑈  ∣  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ } | 
						
							| 11 |  | ovolicc2.11 | ⊢ ( 𝜑  →  𝐻 : 𝑇 ⟶ 𝑇 ) | 
						
							| 12 |  | ovolicc2.12 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 13 |  | ovolicc2.13 | ⊢ ( 𝜑  →  𝐴  ∈  𝐶 ) | 
						
							| 14 |  | ovolicc2.14 | ⊢ ( 𝜑  →  𝐶  ∈  𝑇 ) | 
						
							| 15 |  | ovolicc2.15 | ⊢ 𝐾  =  seq 1 ( ( 𝐻  ∘  1st  ) ,  ( ℕ  ×  { 𝐶 } ) ) | 
						
							| 16 |  | ovolicc2.16 | ⊢ 𝑊  =  { 𝑛  ∈  ℕ  ∣  𝐵  ∈  ( 𝐾 ‘ 𝑛 ) } | 
						
							| 17 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 18 |  | inss2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 19 |  | fss | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) )  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 20 | 5 18 19 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 22 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 23 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 24 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 25 | 23 15 24 14 11 | algrf | ⊢ ( 𝜑  →  𝐾 : ℕ ⟶ 𝑇 ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝐾 ‘ 𝑁 )  ∈  𝑇 ) | 
						
							| 27 |  | ineq1 | ⊢ ( 𝑢  =  ( 𝐾 ‘ 𝑁 )  →  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  =  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 28 | 27 | neeq1d | ⊢ ( 𝑢  =  ( 𝐾 ‘ 𝑁 )  →  ( ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅  ↔  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 29 | 28 10 | elrab2 | ⊢ ( ( 𝐾 ‘ 𝑁 )  ∈  𝑇  ↔  ( ( 𝐾 ‘ 𝑁 )  ∈  𝑈  ∧  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 30 | 26 29 | sylib | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( ( 𝐾 ‘ 𝑁 )  ∈  𝑈  ∧  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝐾 ‘ 𝑁 )  ∈  𝑈 ) | 
						
							| 32 | 22 31 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) )  ∈  ℕ ) | 
						
							| 33 | 21 32 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 34 |  | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ∈  ℝ ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ∈  ℝ ) | 
						
							| 36 | 17 35 | ltnled | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ↔  ¬  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ≤  𝐵 ) ) | 
						
							| 37 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 38 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 39 | 30 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( ( 𝐾 ‘ 𝑁 )  ∈  𝑈  ∧  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 41 |  | n0 | ⊢ ( ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 42 | 40 41 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ∃ 𝑥 𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 43 |  | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ∈  ℝ ) | 
						
							| 44 | 33 43 | syl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ∈  ℝ ) | 
						
							| 45 | 44 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ∈  ℝ ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ∈  ℝ ) | 
						
							| 47 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 48 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) )  ↔  ( 𝑥  ∈  ( 𝐾 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 49 | 47 48 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐾 ‘ 𝑁 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 50 | 49 | simprd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 51 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 52 | 1 2 51 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 54 | 50 53 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 55 | 54 | simp1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 56 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 57 | 49 | simpld | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ∈  ( 𝐾 ‘ 𝑁 ) ) | 
						
							| 58 | 39 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( 𝐾 ‘ 𝑁 )  ∈  𝑈 ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝑁 )  ∈  𝑈 )  →  ( 𝑥  ∈  ( 𝐾 ‘ 𝑁 )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) | 
						
							| 60 | 58 59 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( 𝑥  ∈  ( 𝐾 ‘ 𝑁 )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ∈  ( 𝐾 ‘ 𝑁 )  ↔  ( 𝑥  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) | 
						
							| 62 | 57 61 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝑥  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝑥  ∧  𝑥  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) | 
						
							| 63 | 62 | simp2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝑥 ) | 
						
							| 64 | 54 | simp3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 65 | 46 55 56 63 64 | ltletrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  ∧  𝑥  ∈  ( ( 𝐾 ‘ 𝑁 )  ∩  ( 𝐴 [,] 𝐵 ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝐵 ) | 
						
							| 66 | 42 65 | exlimddv | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝐵 ) | 
						
							| 67 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝑁 )  ∈  𝑈 )  →  ( 𝐵  ∈  ( 𝐾 ‘ 𝑁 )  ↔  ( 𝐵  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝐵  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) | 
						
							| 69 | 58 68 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  ( 𝐵  ∈  ( 𝐾 ‘ 𝑁 )  ↔  ( 𝐵  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  <  𝐵  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) | 
						
							| 70 | 38 66 67 69 | mpbir3and | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  𝐵  ∈  ( 𝐾 ‘ 𝑁 ) ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑁 ) ) | 
						
							| 72 | 71 | eleq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝐵  ∈  ( 𝐾 ‘ 𝑛 )  ↔  𝐵  ∈  ( 𝐾 ‘ 𝑁 ) ) ) | 
						
							| 73 | 72 16 | elrab2 | ⊢ ( 𝑁  ∈  𝑊  ↔  ( 𝑁  ∈  ℕ  ∧  𝐵  ∈  ( 𝐾 ‘ 𝑁 ) ) ) | 
						
							| 74 | 37 70 73 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) )  →  𝑁  ∈  𝑊 ) | 
						
							| 75 | 74 | expr | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( 𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  →  𝑁  ∈  𝑊 ) ) | 
						
							| 76 | 36 75 | sylbird | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( ¬  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ≤  𝐵  →  𝑁  ∈  𝑊 ) ) | 
						
							| 77 | 76 | con1d | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ )  →  ( ¬  𝑁  ∈  𝑊  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ≤  𝐵 ) ) | 
						
							| 78 | 77 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  ∈  𝑊 ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) )  ≤  𝐵 ) |