| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolicc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ovolicc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ovolicc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | ovolicc2.4 | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 5 |  | ovolicc2.5 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 6 |  | ovolicc2.6 | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝒫  ran  ( (,)  ∘  𝐹 )  ∩  Fin ) ) | 
						
							| 7 |  | ovolicc2.7 | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  𝑈 ) | 
						
							| 8 |  | ovolicc2.8 | ⊢ ( 𝜑  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 9 |  | ovolicc2.9 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑈 )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  𝑡 ) | 
						
							| 10 |  | ovolicc2.10 | ⊢ 𝑇  =  { 𝑢  ∈  𝑈  ∣  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ } | 
						
							| 11 |  | ovolicc2.11 | ⊢ ( 𝜑  →  𝐻 : 𝑇 ⟶ 𝑇 ) | 
						
							| 12 |  | ovolicc2.12 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 13 |  | ovolicc2.13 | ⊢ ( 𝜑  →  𝐴  ∈  𝐶 ) | 
						
							| 14 |  | ovolicc2.14 | ⊢ ( 𝜑  →  𝐶  ∈  𝑇 ) | 
						
							| 15 |  | ovolicc2.15 | ⊢ 𝐾  =  seq 1 ( ( 𝐻  ∘  1st  ) ,  ( ℕ  ×  { 𝐶 } ) ) | 
						
							| 16 |  | ovolicc2.16 | ⊢ 𝑊  =  { 𝑛  ∈  ℕ  ∣  𝐵  ∈  ( 𝐾 ‘ 𝑛 ) } | 
						
							| 17 |  | ovolicc2.17 | ⊢ 𝑀  =  inf ( 𝑊 ,  ℝ ,   <  ) | 
						
							| 18 |  | arch | ⊢ ( 𝑥  ∈  ℝ  →  ∃ 𝑧  ∈  ℕ 𝑥  <  𝑧 ) | 
						
							| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 )  →  ∃ 𝑧  ∈  ℕ 𝑥  <  𝑧 ) | 
						
							| 20 |  | df-ima | ⊢ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  =  ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) | 
						
							| 21 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 22 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 23 | 21 15 22 14 11 | algrf | ⊢ ( 𝜑  →  𝐾 : ℕ ⟶ 𝑇 ) | 
						
							| 24 | 10 | ssrab3 | ⊢ 𝑇  ⊆  𝑈 | 
						
							| 25 |  | fss | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇  ∧  𝑇  ⊆  𝑈 )  →  𝐾 : ℕ ⟶ 𝑈 ) | 
						
							| 26 | 23 24 25 | sylancl | ⊢ ( 𝜑  →  𝐾 : ℕ ⟶ 𝑈 ) | 
						
							| 27 |  | fco | ⊢ ( ( 𝐺 : 𝑈 ⟶ ℕ  ∧  𝐾 : ℕ ⟶ 𝑈 )  →  ( 𝐺  ∘  𝐾 ) : ℕ ⟶ ℕ ) | 
						
							| 28 | 8 26 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝐾 ) : ℕ ⟶ ℕ ) | 
						
							| 29 |  | fz1ssnn | ⊢ ( 1 ... 𝑀 )  ⊆  ℕ | 
						
							| 30 |  | fssres | ⊢ ( ( ( 𝐺  ∘  𝐾 ) : ℕ ⟶ ℕ  ∧  ( 1 ... 𝑀 )  ⊆  ℕ )  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 31 | 28 29 30 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ) | 
						
							| 32 | 31 | frnd | ⊢ ( 𝜑  →  ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) )  ⊆  ℕ ) | 
						
							| 33 | 20 32 | eqsstrid | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ℕ ) | 
						
							| 34 |  | nnssre | ⊢ ℕ  ⊆  ℝ | 
						
							| 35 | 33 34 | sstrdi | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ℝ ) | 
						
							| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ℝ ) | 
						
							| 37 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ) | 
						
							| 38 | 36 37 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 39 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 40 |  | nnre | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℝ ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 42 |  | lelttr | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑦  ≤  𝑥  ∧  𝑥  <  𝑧 )  →  𝑦  <  𝑧 ) ) | 
						
							| 43 | 38 39 41 42 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( ( 𝑦  ≤  𝑥  ∧  𝑥  <  𝑧 )  →  𝑦  <  𝑧 ) ) | 
						
							| 44 | 43 | ancomsd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( ( 𝑥  <  𝑧  ∧  𝑦  ≤  𝑥 )  →  𝑦  <  𝑧 ) ) | 
						
							| 45 | 44 | expdimp | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  ∧  𝑥  <  𝑧 )  →  ( 𝑦  ≤  𝑥  →  𝑦  <  𝑧 ) ) | 
						
							| 46 | 45 | an32s | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑥  <  𝑧 )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( 𝑦  ≤  𝑥  →  𝑦  <  𝑧 ) ) | 
						
							| 47 | 46 | ralimdva | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  𝑥  <  𝑧 )  →  ( ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥  →  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) ) | 
						
							| 48 | 47 | impancom | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  𝑧  ∈  ℕ )  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 )  →  ( 𝑥  <  𝑧  →  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) ) | 
						
							| 49 | 48 | an32s | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 )  ∧  𝑧  ∈  ℕ )  →  ( 𝑥  <  𝑧  →  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) ) | 
						
							| 50 | 49 | reximdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 )  →  ( ∃ 𝑧  ∈  ℕ 𝑥  <  𝑧  →  ∃ 𝑧  ∈  ℕ ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) ) | 
						
							| 51 | 19 50 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ )  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 )  →  ∃ 𝑧  ∈  ℕ ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) | 
						
							| 52 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 53 |  | fvres | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑖 ) ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑖 ) ) | 
						
							| 55 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  →  𝑖  ∈  ℕ ) | 
						
							| 56 |  | fvco3 | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇  ∧  𝑖  ∈  ℕ )  →  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 57 | 23 55 56 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 58 | 54 57 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 59 | 58 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 60 |  | fvres | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  =  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑗 ) ) | 
						
							| 61 | 60 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  =  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑗 ) ) | 
						
							| 62 |  | elfznn | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  𝑗  ∈  ℕ ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  𝑗  ∈  ℕ ) | 
						
							| 64 |  | fvco3 | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑗 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 65 | 23 63 64 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( 𝐺  ∘  𝐾 ) ‘ 𝑗 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 66 | 61 65 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) | 
						
							| 67 | 59 66 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  ↔  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) | 
						
							| 68 |  | 2fveq3 | ⊢ ( ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 69 | 29 | a1i | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ⊆  ℕ ) | 
						
							| 70 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑀 )  →  𝑛  ∈  ℕ ) | 
						
							| 71 | 70 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑛  ∈  ℕ ) | 
						
							| 72 | 71 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑛  ∈  ℝ ) | 
						
							| 73 | 16 | ssrab3 | ⊢ 𝑊  ⊆  ℕ | 
						
							| 74 | 73 34 | sstri | ⊢ 𝑊  ⊆  ℝ | 
						
							| 75 | 73 21 | sseqtri | ⊢ 𝑊  ⊆  ( ℤ≥ ‘ 1 ) | 
						
							| 76 |  | nnnfi | ⊢ ¬  ℕ  ∈  Fin | 
						
							| 77 | 6 | elin2d | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 78 |  | ssfi | ⊢ ( ( 𝑈  ∈  Fin  ∧  𝑇  ⊆  𝑈 )  →  𝑇  ∈  Fin ) | 
						
							| 79 | 77 24 78 | sylancl | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  𝑇  ∈  Fin ) | 
						
							| 81 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  𝐾 : ℕ ⟶ 𝑇 ) | 
						
							| 82 |  | 2fveq3 | ⊢ ( ( 𝐾 ‘ 𝑖 )  =  ( 𝐾 ‘ 𝑗 )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( ( 𝐾 ‘ 𝑖 )  =  ( 𝐾 ‘ 𝑗 )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) | 
						
							| 84 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝜑 ) | 
						
							| 85 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑖  ∈  ℕ ) | 
						
							| 86 |  | ral0 | ⊢ ∀ 𝑚  ∈  ∅ 𝑛  ≤  𝑚 | 
						
							| 87 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑊  =  ∅ ) | 
						
							| 88 | 87 | raleqdv | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚  ↔  ∀ 𝑚  ∈  ∅ 𝑛  ≤  𝑚 ) ) | 
						
							| 89 | 86 88 | mpbiri | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 ) | 
						
							| 90 | 89 | ralrimivw | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ∀ 𝑛  ∈  ℕ ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 ) | 
						
							| 91 |  | rabid2 | ⊢ ( ℕ  =  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 }  ↔  ∀ 𝑛  ∈  ℕ ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 ) | 
						
							| 92 | 90 91 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ℕ  =  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 93 | 85 92 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑖  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 94 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑗  ∈  ℕ ) | 
						
							| 95 | 94 92 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  𝑗  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 96 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ovolicc2lem3 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 }  ∧  𝑗  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) )  →  ( 𝑖  =  𝑗  ↔  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 97 | 84 93 95 96 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( 𝑖  =  𝑗  ↔  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 98 | 83 97 | imbitrrid | ⊢ ( ( ( 𝜑  ∧  𝑊  =  ∅ )  ∧  ( 𝑖  ∈  ℕ  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝐾 ‘ 𝑖 )  =  ( 𝐾 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 99 | 98 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ∀ 𝑖  ∈  ℕ ∀ 𝑗  ∈  ℕ ( ( 𝐾 ‘ 𝑖 )  =  ( 𝐾 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 100 |  | dff13 | ⊢ ( 𝐾 : ℕ –1-1→ 𝑇  ↔  ( 𝐾 : ℕ ⟶ 𝑇  ∧  ∀ 𝑖  ∈  ℕ ∀ 𝑗  ∈  ℕ ( ( 𝐾 ‘ 𝑖 )  =  ( 𝐾 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 101 | 81 99 100 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  𝐾 : ℕ –1-1→ 𝑇 ) | 
						
							| 102 |  | f1domg | ⊢ ( 𝑇  ∈  Fin  →  ( 𝐾 : ℕ –1-1→ 𝑇  →  ℕ  ≼  𝑇 ) ) | 
						
							| 103 | 80 101 102 | sylc | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ℕ  ≼  𝑇 ) | 
						
							| 104 |  | domfi | ⊢ ( ( 𝑇  ∈  Fin  ∧  ℕ  ≼  𝑇 )  →  ℕ  ∈  Fin ) | 
						
							| 105 | 79 103 104 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑊  =  ∅ )  →  ℕ  ∈  Fin ) | 
						
							| 106 | 105 | ex | ⊢ ( 𝜑  →  ( 𝑊  =  ∅  →  ℕ  ∈  Fin ) ) | 
						
							| 107 | 106 | necon3bd | ⊢ ( 𝜑  →  ( ¬  ℕ  ∈  Fin  →  𝑊  ≠  ∅ ) ) | 
						
							| 108 | 76 107 | mpi | ⊢ ( 𝜑  →  𝑊  ≠  ∅ ) | 
						
							| 109 |  | infssuzcl | ⊢ ( ( 𝑊  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝑊  ≠  ∅ )  →  inf ( 𝑊 ,  ℝ ,   <  )  ∈  𝑊 ) | 
						
							| 110 | 75 108 109 | sylancr | ⊢ ( 𝜑  →  inf ( 𝑊 ,  ℝ ,   <  )  ∈  𝑊 ) | 
						
							| 111 | 17 110 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) | 
						
							| 112 | 74 111 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 113 | 112 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑀  ∈  ℝ ) | 
						
							| 114 | 74 | sseli | ⊢ ( 𝑚  ∈  𝑊  →  𝑚  ∈  ℝ ) | 
						
							| 115 | 114 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑚  ∈  ℝ ) | 
						
							| 116 |  | elfzle2 | ⊢ ( 𝑛  ∈  ( 1 ... 𝑀 )  →  𝑛  ≤  𝑀 ) | 
						
							| 117 | 116 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑛  ≤  𝑀 ) | 
						
							| 118 |  | infssuzle | ⊢ ( ( 𝑊  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝑚  ∈  𝑊 )  →  inf ( 𝑊 ,  ℝ ,   <  )  ≤  𝑚 ) | 
						
							| 119 | 75 118 | mpan | ⊢ ( 𝑚  ∈  𝑊  →  inf ( 𝑊 ,  ℝ ,   <  )  ≤  𝑚 ) | 
						
							| 120 | 17 119 | eqbrtrid | ⊢ ( 𝑚  ∈  𝑊  →  𝑀  ≤  𝑚 ) | 
						
							| 121 | 120 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑀  ≤  𝑚 ) | 
						
							| 122 | 72 113 115 117 121 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  ∧  𝑚  ∈  𝑊 )  →  𝑛  ≤  𝑚 ) | 
						
							| 123 | 122 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 ) | 
						
							| 124 | 69 123 | ssrabdv | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ⊆  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( 1 ... 𝑀 )  ⊆  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 126 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 127 | 125 126 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  𝑖  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 128 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 129 | 125 128 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  𝑗  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) | 
						
							| 130 | 127 129 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( 𝑖  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 }  ∧  𝑗  ∈  { 𝑛  ∈  ℕ  ∣  ∀ 𝑚  ∈  𝑊 𝑛  ≤  𝑚 } ) ) | 
						
							| 131 | 130 96 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( 𝑖  =  𝑗  ↔  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) | 
						
							| 132 | 68 131 | imbitrrid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 133 | 67 132 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) )  →  ( ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 134 | 133 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 135 |  | dff13 | ⊢ ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ  ↔  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ  ∧  ∀ 𝑖  ∈  ( 1 ... 𝑀 ) ∀ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑖 )  =  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 136 | 31 134 135 | sylanbrc | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ ) | 
						
							| 137 |  | f1f1orn | ⊢ ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ) | 
						
							| 138 | 136 137 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ) | 
						
							| 139 |  | f1oeq3 | ⊢ ( ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  =  ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ↔  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 140 | 20 139 | ax-mp | ⊢ ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ↔  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) ) | 
						
							| 141 | 138 140 | sylibr | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ) | 
						
							| 142 |  | f1ofo | ⊢ ( ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ) | 
						
							| 144 |  | fofi | ⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  ( ( 𝐺  ∘  𝐾 )  ↾  ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ∈  Fin ) | 
						
							| 145 | 52 143 144 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ∈  Fin ) | 
						
							| 146 |  | fimaxre2 | ⊢ ( ( ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ℝ  ∧  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ∈  Fin )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 ) | 
						
							| 147 | 35 145 146 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ≤  𝑥 ) | 
						
							| 148 | 51 147 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℕ ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) | 
						
							| 149 | 2 1 | resubcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 150 | 149 | rexrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℝ* ) | 
						
							| 151 | 150 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝐵  −  𝐴 )  ∈  ℝ* ) | 
						
							| 152 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑧 )  ∈  Fin ) | 
						
							| 153 |  | elfznn | ⊢ ( 𝑗  ∈  ( 1 ... 𝑧 )  →  𝑗  ∈  ℕ ) | 
						
							| 154 |  | eqid | ⊢ ( ( abs  ∘   −  )  ∘  𝐹 )  =  ( ( abs  ∘   −  )  ∘  𝐹 ) | 
						
							| 155 | 154 | ovolfsf | ⊢ ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  ( ( abs  ∘   −  )  ∘  𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 156 | 5 155 | syl | ⊢ ( 𝜑  →  ( ( abs  ∘   −  )  ∘  𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 157 | 156 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 158 | 153 157 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 159 |  | elrege0 | ⊢ ( ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ( 0 [,) +∞ )  ↔  ( ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) ) | 
						
							| 160 | 158 159 | sylib | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  ( ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ  ∧  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) ) | 
						
							| 161 | 160 | simpld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 162 | 152 161 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 163 | 162 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 164 | 163 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 165 | 154 4 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  →  𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 166 | 5 165 | syl | ⊢ ( 𝜑  →  𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) | 
						
							| 167 | 166 | frnd | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ( 0 [,) +∞ ) ) | 
						
							| 168 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 169 | 167 168 | sstrdi | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ ) | 
						
							| 170 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 171 | 169 170 | sstrdi | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ* ) | 
						
							| 172 |  | supxrcl | ⊢ ( ran  𝑆  ⊆  ℝ*  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 173 | 171 172 | syl | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 174 | 173 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 175 | 149 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝐵  −  𝐴 )  ∈  ℝ ) | 
						
							| 176 | 33 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 177 | 168 157 | sselid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 178 | 176 177 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 179 | 145 178 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 180 | 179 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 181 |  | inss2 | ⊢ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 182 |  | fss | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  (  ≤   ∩  ( ℝ  ×  ℝ ) )  ⊆  ( ℝ  ×  ℝ ) )  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 183 | 5 181 182 | sylancl | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 184 | 73 111 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 185 | 26 184 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐾 ‘ 𝑀 )  ∈  𝑈 ) | 
						
							| 186 | 8 185 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) )  ∈  ℕ ) | 
						
							| 187 | 183 186 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 188 |  | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  ∈  ℝ ) | 
						
							| 189 | 187 188 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  ∈  ℝ ) | 
						
							| 190 | 24 14 | sselid | ⊢ ( 𝜑  →  𝐶  ∈  𝑈 ) | 
						
							| 191 | 8 190 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐶 )  ∈  ℕ ) | 
						
							| 192 | 183 191 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 193 |  | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  ∈  ℝ ) | 
						
							| 194 | 192 193 | syl | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  ∈  ℝ ) | 
						
							| 195 | 189 194 | resubcld | ⊢ ( 𝜑  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  ∈  ℝ ) | 
						
							| 196 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  =  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) | 
						
							| 197 | 177 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 198 | 176 197 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 199 | 196 52 141 58 198 | fsumf1o | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) | 
						
							| 200 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 201 |  | ffvelcdm | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑈  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ 𝑖 )  ∈  𝑈 ) | 
						
							| 202 | 26 55 201 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾 ‘ 𝑖 )  ∈  𝑈 ) | 
						
							| 203 | 200 202 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  ∈  ℕ ) | 
						
							| 204 | 154 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  ∈  ℕ )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 205 | 5 203 204 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 206 | 205 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 207 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 208 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 209 | 26 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ 𝑖 )  ∈  𝑈 ) | 
						
							| 210 | 208 209 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  ∈  ℕ ) | 
						
							| 211 | 207 210 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 212 |  | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 213 | 211 212 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 214 | 55 213 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 215 | 214 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℂ ) | 
						
							| 216 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝐹 : ℕ ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 217 | 216 203 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 218 |  | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 219 | 217 218 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 220 | 219 | recnd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℂ ) | 
						
							| 221 | 52 215 220 | fsumsub | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 222 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 223 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 224 | 223 213 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 225 | 222 224 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ ) | 
						
							| 226 | 225 | recnd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℂ ) | 
						
							| 227 | 189 | recnd | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  ∈  ℂ ) | 
						
							| 228 | 75 111 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 229 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑀  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) | 
						
							| 230 | 229 | fveq2d | ⊢ ( 𝑖  =  𝑀  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) | 
						
							| 231 | 230 | fveq2d | ⊢ ( 𝑖  =  𝑀  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) | 
						
							| 232 | 228 215 231 | fsumm1 | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  +  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 233 | 226 227 232 | comraddd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 234 |  | 2fveq3 | ⊢ ( 𝑖  =  1  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) | 
						
							| 235 | 234 | fveq2d | ⊢ ( 𝑖  =  1  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) | 
						
							| 236 | 235 | fveq2d | ⊢ ( 𝑖  =  1  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) ) | 
						
							| 237 | 228 220 236 | fsum1p | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) )  +  Σ 𝑖  ∈  ( ( 1  +  1 ) ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 238 | 21 15 22 14 | algr0 | ⊢ ( 𝜑  →  ( 𝐾 ‘ 1 )  =  𝐶 ) | 
						
							| 239 | 238 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐾 ‘ 1 ) )  =  ( 𝐺 ‘ 𝐶 ) ) | 
						
							| 240 | 239 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) | 
						
							| 241 | 240 | fveq2d | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) )  =  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) | 
						
							| 242 | 22 | peano2zd | ⊢ ( 𝜑  →  ( 1  +  1 )  ∈  ℤ ) | 
						
							| 243 | 184 | nnzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 244 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 245 |  | fzp1ss | ⊢ ( 1  ∈  ℤ  →  ( ( 1  +  1 ) ... 𝑀 )  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 246 | 244 245 | mp1i | ⊢ ( 𝜑  →  ( ( 1  +  1 ) ... 𝑀 )  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 247 | 246 | sselda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 248 | 247 220 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 1  +  1 ) ... 𝑀 ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℂ ) | 
						
							| 249 |  | 2fveq3 | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 250 | 249 | fveq2d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 251 | 250 | fveq2d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 252 | 22 242 243 248 251 | fsumshftm | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1  +  1 ) ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  Σ 𝑗  ∈  ( ( ( 1  +  1 )  −  1 ) ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 253 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 254 | 253 253 | pncan3oi | ⊢ ( ( 1  +  1 )  −  1 )  =  1 | 
						
							| 255 | 254 | oveq1i | ⊢ ( ( ( 1  +  1 )  −  1 ) ... ( 𝑀  −  1 ) )  =  ( 1 ... ( 𝑀  −  1 ) ) | 
						
							| 256 | 255 | sumeq1i | ⊢ Σ 𝑗  ∈  ( ( ( 1  +  1 )  −  1 ) ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) )  =  Σ 𝑗  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 257 |  | fvoveq1 | ⊢ ( 𝑗  =  𝑖  →  ( 𝐾 ‘ ( 𝑗  +  1 ) )  =  ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 258 | 257 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 259 | 258 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 260 | 259 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) )  =  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 261 | 260 | cbvsumv | ⊢ Σ 𝑗  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 262 | 256 261 | eqtri | ⊢ Σ 𝑗  ∈  ( ( ( 1  +  1 )  −  1 ) ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗  +  1 ) ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 263 | 252 262 | eqtrdi | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( ( 1  +  1 ) ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 264 | 241 263 | oveq12d | ⊢ ( 𝜑  →  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) )  +  Σ 𝑖  ∈  ( ( 1  +  1 ) ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) )  =  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 265 | 237 264 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  =  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 266 | 233 265 | oveq12d | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) )  −  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 267 | 194 | recnd | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  ∈  ℂ ) | 
						
							| 268 |  | peano2nn | ⊢ ( 𝑖  ∈  ℕ  →  ( 𝑖  +  1 )  ∈  ℕ ) | 
						
							| 269 |  | ffvelcdm | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑈  ∧  ( 𝑖  +  1 )  ∈  ℕ )  →  ( 𝐾 ‘ ( 𝑖  +  1 ) )  ∈  𝑈 ) | 
						
							| 270 | 26 268 269 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ ( 𝑖  +  1 ) )  ∈  𝑈 ) | 
						
							| 271 | 208 270 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) )  ∈  ℕ ) | 
						
							| 272 | 207 271 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 273 |  | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ℝ ) | 
						
							| 274 | 272 273 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ℝ ) | 
						
							| 275 | 223 274 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ℝ ) | 
						
							| 276 | 222 275 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ℝ ) | 
						
							| 277 | 276 | recnd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ∈  ℂ ) | 
						
							| 278 | 227 226 267 277 | addsub4d | ⊢ ( 𝜑  →  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) )  −  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  +  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) )  =  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 279 | 221 266 278 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) )  =  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 280 | 199 206 279 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  =  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 281 | 280 179 | eqeltrrd | ⊢ ( 𝜑  →  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 282 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑀 ) ) | 
						
							| 283 | 282 | eleq2d | ⊢ ( 𝑛  =  𝑀  →  ( 𝐵  ∈  ( 𝐾 ‘ 𝑛 )  ↔  𝐵  ∈  ( 𝐾 ‘ 𝑀 ) ) ) | 
						
							| 284 | 283 16 | elrab2 | ⊢ ( 𝑀  ∈  𝑊  ↔  ( 𝑀  ∈  ℕ  ∧  𝐵  ∈  ( 𝐾 ‘ 𝑀 ) ) ) | 
						
							| 285 | 111 284 | sylib | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ  ∧  𝐵  ∈  ( 𝐾 ‘ 𝑀 ) ) ) | 
						
							| 286 | 285 | simprd | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐾 ‘ 𝑀 ) ) | 
						
							| 287 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ 𝑀 )  ∈  𝑈 )  →  ( 𝐵  ∈  ( 𝐾 ‘ 𝑀 )  ↔  ( 𝐵  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  <  𝐵  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) ) | 
						
							| 288 | 185 287 | mpdan | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐾 ‘ 𝑀 )  ↔  ( 𝐵  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  <  𝐵  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) ) | 
						
							| 289 | 286 288 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  <  𝐵  ∧  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 290 | 289 | simp3d | ⊢ ( 𝜑  →  𝐵  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) | 
						
							| 291 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑  ∧  𝐶  ∈  𝑈 )  →  ( 𝐴  ∈  𝐶  ↔  ( 𝐴  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  <  𝐴  ∧  𝐴  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) ) | 
						
							| 292 | 190 291 | mpdan | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐶  ↔  ( 𝐴  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  <  𝐴  ∧  𝐴  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) ) | 
						
							| 293 | 13 292 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  <  𝐴  ∧  𝐴  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) | 
						
							| 294 | 293 | simp2d | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) )  <  𝐴 ) | 
						
							| 295 | 2 194 189 1 290 294 | lt2subd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  <  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) | 
						
							| 296 | 149 195 295 | ltled | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) | 
						
							| 297 | 223 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ℕ ) | 
						
							| 298 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 299 | 243 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 300 |  | elfzm11 | ⊢ ( ( 1  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  ↔  ( 𝑖  ∈  ℤ  ∧  1  ≤  𝑖  ∧  𝑖  <  𝑀 ) ) ) | 
						
							| 301 | 244 299 300 | sylancr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) )  ↔  ( 𝑖  ∈  ℤ  ∧  1  ≤  𝑖  ∧  𝑖  <  𝑀 ) ) ) | 
						
							| 302 | 298 301 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  ∈  ℤ  ∧  1  ≤  𝑖  ∧  𝑖  <  𝑀 ) ) | 
						
							| 303 | 302 | simp3d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  <  𝑀 ) | 
						
							| 304 | 297 | nnred | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑖  ∈  ℝ ) | 
						
							| 305 | 112 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 306 | 304 305 | ltnled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  <  𝑀  ↔  ¬  𝑀  ≤  𝑖 ) ) | 
						
							| 307 | 303 306 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ¬  𝑀  ≤  𝑖 ) | 
						
							| 308 |  | infssuzle | ⊢ ( ( 𝑊  ⊆  ( ℤ≥ ‘ 1 )  ∧  𝑖  ∈  𝑊 )  →  inf ( 𝑊 ,  ℝ ,   <  )  ≤  𝑖 ) | 
						
							| 309 | 75 308 | mpan | ⊢ ( 𝑖  ∈  𝑊  →  inf ( 𝑊 ,  ℝ ,   <  )  ≤  𝑖 ) | 
						
							| 310 | 17 309 | eqbrtrid | ⊢ ( 𝑖  ∈  𝑊  →  𝑀  ≤  𝑖 ) | 
						
							| 311 | 307 310 | nsyl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ¬  𝑖  ∈  𝑊 ) | 
						
							| 312 | 297 311 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝑖  ∈  ℕ  ∧  ¬  𝑖  ∈  𝑊 ) ) | 
						
							| 313 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ovolicc2lem2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℕ  ∧  ¬  𝑖  ∈  𝑊 ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ) | 
						
							| 314 | 312 313 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ) | 
						
							| 315 | 314 | iftrued | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ,  𝐵 )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) | 
						
							| 316 |  | 2fveq3 | ⊢ ( 𝑡  =  ( 𝐾 ‘ 𝑖 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) | 
						
							| 317 | 316 | fveq2d | ⊢ ( 𝑡  =  ( 𝐾 ‘ 𝑖 )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) | 
						
							| 318 | 317 | breq1d | ⊢ ( 𝑡  =  ( 𝐾 ‘ 𝑖 )  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵  ↔  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ) ) | 
						
							| 319 | 318 317 | ifbieq1d | ⊢ ( 𝑡  =  ( 𝐾 ‘ 𝑖 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  =  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ,  𝐵 ) ) | 
						
							| 320 |  | fveq2 | ⊢ ( 𝑡  =  ( 𝐾 ‘ 𝑖 )  →  ( 𝐻 ‘ 𝑡 )  =  ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 321 | 319 320 | eleq12d | ⊢ ( 𝑡  =  ( 𝐾 ‘ 𝑖 )  →  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ 𝑡 )  ↔  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) | 
						
							| 322 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 323 | 322 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ 𝑡 ) ) | 
						
							| 324 |  | ffvelcdm | ⊢ ( ( 𝐾 : ℕ ⟶ 𝑇  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ 𝑖 )  ∈  𝑇 ) | 
						
							| 325 | 23 223 324 | syl2an | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝐾 ‘ 𝑖 )  ∈  𝑇 ) | 
						
							| 326 | 321 323 325 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ,  𝐵 )  ∈  ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 327 | 315 326 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 328 | 21 15 22 14 11 | algrp1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℕ )  →  ( 𝐾 ‘ ( 𝑖  +  1 ) )  =  ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 329 | 223 328 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝐾 ‘ ( 𝑖  +  1 ) )  =  ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) | 
						
							| 330 | 327 329 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 331 | 223 270 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 𝐾 ‘ ( 𝑖  +  1 ) )  ∈  𝑈 ) | 
						
							| 332 | 1 2 3 4 5 6 7 8 9 | ovolicc2lem1 | ⊢ ( ( 𝜑  ∧  ( 𝐾 ‘ ( 𝑖  +  1 ) )  ∈  𝑈 )  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ( 𝐾 ‘ ( 𝑖  +  1 ) )  ↔  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∧  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 333 | 331 332 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ( 𝐾 ‘ ( 𝑖  +  1 ) )  ↔  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∧  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 334 | 330 333 | mpbid | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  ∧  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 335 | 334 | simp2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) | 
						
							| 336 | 275 224 335 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) | 
						
							| 337 | 222 275 224 336 | fsumle | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ≤  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) | 
						
							| 338 | 225 276 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) )  ↔  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) )  ≤  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 339 | 337 338 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) | 
						
							| 340 | 225 276 | resubcld | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) )  ∈  ℝ ) | 
						
							| 341 | 195 340 | addge01d | ⊢ ( 𝜑  →  ( 0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) )  ↔  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  ≤  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) ) | 
						
							| 342 | 339 341 | mpbid | ⊢ ( 𝜑  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  ≤  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 343 | 149 195 281 296 342 | letrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) )  −  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) )  +  ( Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑀  −  1 ) ) ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖  +  1 ) ) ) ) ) ) ) ) | 
						
							| 344 | 343 280 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 345 | 344 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝐵  −  𝐴 )  ≤  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 346 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 1 ... 𝑧 )  ∈  Fin ) | 
						
							| 347 | 161 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 348 | 160 | simprd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 349 | 348 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  0  ≤  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 350 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℕ )  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ℕ ) | 
						
							| 351 | 350 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑦  ∈  ℕ ) | 
						
							| 352 | 351 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 353 | 40 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 354 |  | ltle | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑦  <  𝑧  →  𝑦  ≤  𝑧 ) ) | 
						
							| 355 | 352 353 354 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( 𝑦  <  𝑧  →  𝑦  ≤  𝑧 ) ) | 
						
							| 356 | 351 21 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑦  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 357 |  | nnz | ⊢ ( 𝑧  ∈  ℕ  →  𝑧  ∈  ℤ ) | 
						
							| 358 | 357 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 359 |  | elfz5 | ⊢ ( ( 𝑦  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑧  ∈  ℤ )  →  ( 𝑦  ∈  ( 1 ... 𝑧 )  ↔  𝑦  ≤  𝑧 ) ) | 
						
							| 360 | 356 358 359 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( 𝑦  ∈  ( 1 ... 𝑧 )  ↔  𝑦  ≤  𝑧 ) ) | 
						
							| 361 | 355 360 | sylibrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℕ )  ∧  𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) )  →  ( 𝑦  <  𝑧  →  𝑦  ∈  ( 1 ... 𝑧 ) ) ) | 
						
							| 362 | 361 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℕ )  →  ( ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧  →  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ∈  ( 1 ... 𝑧 ) ) ) | 
						
							| 363 | 362 | impr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ∈  ( 1 ... 𝑧 ) ) | 
						
							| 364 |  | dfss3 | ⊢ ( ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ( 1 ... 𝑧 )  ↔  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  ∈  ( 1 ... 𝑧 ) ) | 
						
							| 365 | 363 364 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) )  ⊆  ( 1 ... 𝑧 ) ) | 
						
							| 366 | 346 347 349 365 | fsumless | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 367 | 175 180 163 345 366 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝐵  −  𝐴 )  ≤  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 368 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  =  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 369 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  𝑧  ∈  ℕ ) | 
						
							| 370 | 369 21 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  𝑧  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 371 | 347 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  ∧  𝑗  ∈  ( 1 ... 𝑧 ) )  →  ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 372 | 368 370 371 | fsumser | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑧 ) ) | 
						
							| 373 | 4 | fveq1i | ⊢ ( 𝑆 ‘ 𝑧 )  =  ( seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) ‘ 𝑧 ) | 
						
							| 374 | 372 373 | eqtr4di | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  =  ( 𝑆 ‘ 𝑧 ) ) | 
						
							| 375 | 166 | ffnd | ⊢ ( 𝜑  →  𝑆  Fn  ℕ ) | 
						
							| 376 |  | fnfvelrn | ⊢ ( ( 𝑆  Fn  ℕ  ∧  𝑧  ∈  ℕ )  →  ( 𝑆 ‘ 𝑧 )  ∈  ran  𝑆 ) | 
						
							| 377 | 375 369 376 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝑆 ‘ 𝑧 )  ∈  ran  𝑆 ) | 
						
							| 378 |  | supxrub | ⊢ ( ( ran  𝑆  ⊆  ℝ*  ∧  ( 𝑆 ‘ 𝑧 )  ∈  ran  𝑆 )  →  ( 𝑆 ‘ 𝑧 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 379 | 171 377 378 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝑆 ‘ 𝑧 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 380 | 374 379 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  Σ 𝑗  ∈  ( 1 ... 𝑧 ) ( ( ( abs  ∘   −  )  ∘  𝐹 ) ‘ 𝑗 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 381 | 151 164 174 367 380 | xrletrd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ℕ  ∧  ∀ 𝑦  ∈  ( ( 𝐺  ∘  𝐾 )  “  ( 1 ... 𝑀 ) ) 𝑦  <  𝑧 ) )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 382 | 148 381 | rexlimddv | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) |