| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolicc.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ovolicc.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ovolicc.3 | ⊢ ( 𝜑  →  𝐴  ≤  𝐵 ) | 
						
							| 4 |  | ovolicc2.4 | ⊢ 𝑆  =  seq 1 (  +  ,  ( ( abs  ∘   −  )  ∘  𝐹 ) ) | 
						
							| 5 |  | ovolicc2.5 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 6 |  | ovolicc2.6 | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝒫  ran  ( (,)  ∘  𝐹 )  ∩  Fin ) ) | 
						
							| 7 |  | ovolicc2.7 | ⊢ ( 𝜑  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  𝑈 ) | 
						
							| 8 |  | ovolicc2.8 | ⊢ ( 𝜑  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 9 |  | ovolicc2.9 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑈 )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  𝑡 ) | 
						
							| 10 |  | ovolicc2.10 | ⊢ 𝑇  =  { 𝑢  ∈  𝑈  ∣  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ } | 
						
							| 11 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 12 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 13 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 14 | 11 12 3 13 | syl3anc | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 15 | 7 14 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  ∪  𝑈 ) | 
						
							| 16 |  | eluni2 | ⊢ ( 𝐴  ∈  ∪  𝑈  ↔  ∃ 𝑧  ∈  𝑈 𝐴  ∈  𝑧 ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  𝑈 𝐴  ∈  𝑧 ) | 
						
							| 18 | 6 | elin2d | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 19 | 10 | ssrab3 | ⊢ 𝑇  ⊆  𝑈 | 
						
							| 20 |  | ssfi | ⊢ ( ( 𝑈  ∈  Fin  ∧  𝑇  ⊆  𝑈 )  →  𝑇  ∈  Fin ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑  →  𝑇  ∈  Fin ) | 
						
							| 22 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  𝑈 ) | 
						
							| 23 |  | ineq1 | ⊢ ( 𝑢  =  𝑡  →  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 24 | 23 | neeq1d | ⊢ ( 𝑢  =  𝑡  →  ( ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅  ↔  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 25 | 24 10 | elrab2 | ⊢ ( 𝑡  ∈  𝑇  ↔  ( 𝑡  ∈  𝑈  ∧  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 26 | 25 | simplbi | ⊢ ( 𝑡  ∈  𝑇  →  𝑡  ∈  𝑈 ) | 
						
							| 27 |  | ffvelcdm | ⊢ ( ( 𝐺 : 𝑈 ⟶ ℕ  ∧  𝑡  ∈  𝑈 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℕ ) | 
						
							| 28 | 8 26 27 | syl2an | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℕ ) | 
						
							| 29 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑡 )  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 30 | 28 29 | syldan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 31 | 30 | elin2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 32 |  | xp2nd | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ ) | 
						
							| 33 | 31 32 | syl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ ) | 
						
							| 34 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐵  ∈  ℝ ) | 
						
							| 35 | 33 34 | ifcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ℝ ) | 
						
							| 36 | 25 | simprbi | ⊢ ( 𝑡  ∈  𝑇  →  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 38 |  | n0 | ⊢ ( ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑦 𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 40 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 42 | 41 | elin2d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 43 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 44 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) ) | 
						
							| 45 | 1 43 44 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝑦  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) ) | 
						
							| 46 | 42 45 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝑦  ∈  ℝ  ∧  𝐴  ≤  𝑦  ∧  𝑦  ≤  𝐵 ) ) | 
						
							| 47 | 46 | simp1d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 48 | 31 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 49 | 48 32 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ ) | 
						
							| 50 | 46 | simp2d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝐴  ≤  𝑦 ) | 
						
							| 51 | 41 | elin1d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  ∈  𝑡 ) | 
						
							| 52 | 28 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝐺 ‘ 𝑡 )  ∈  ℕ ) | 
						
							| 53 |  | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) )  ∧  ( 𝐺 ‘ 𝑡 )  ∈  ℕ )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 54 | 5 52 53 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 55 | 26 9 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  𝑡 ) | 
						
							| 56 | 55 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  𝑡 ) | 
						
							| 57 |  | 1st2nd2 | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  =  〈 ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) | 
						
							| 58 | 48 57 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  =  〈 ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  =  ( (,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) ) | 
						
							| 60 |  | df-ov | ⊢ ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) )  =  ( (,) ‘ 〈 ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) | 
						
							| 61 | 59 60 | eqtr4di | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  =  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) | 
						
							| 62 | 54 56 61 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑡  =  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) | 
						
							| 63 | 51 62 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  ∈  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) | 
						
							| 64 |  | xp1st | ⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ ) | 
						
							| 65 | 48 64 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ ) | 
						
							| 66 |  | rexr | ⊢ ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ  →  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ* ) | 
						
							| 67 |  | rexr | ⊢ ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ* ) | 
						
							| 68 |  | elioo2 | ⊢ ( ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ*  ∧  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ* )  →  ( 𝑦  ∈  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  <  𝑦  ∧  𝑦  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 69 | 66 67 68 | syl2an | ⊢ ( ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ  ∧  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ )  →  ( 𝑦  ∈  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  <  𝑦  ∧  𝑦  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 70 | 65 49 69 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝑦  ∈  ( ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) )  ↔  ( 𝑦  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  <  𝑦  ∧  𝑦  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) | 
						
							| 71 | 63 70 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  ( 𝑦  ∈  ℝ  ∧  ( 1st  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  <  𝑦  ∧  𝑦  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) | 
						
							| 72 | 71 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  <  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 73 | 47 49 72 | ltled | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝑦  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 74 | 40 47 49 50 73 | letrd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ∧  𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) ) ) )  →  𝐴  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 75 | 74 | expr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) | 
						
							| 76 | 75 | exlimdv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ∃ 𝑦 𝑦  ∈  ( 𝑡  ∩  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) | 
						
							| 77 | 39 76 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐴  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 78 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐴  ≤  𝐵 ) | 
						
							| 79 |  | breq2 | ⊢ ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  =  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  →  ( 𝐴  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ↔  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 ) ) ) | 
						
							| 80 |  | breq2 | ⊢ ( 𝐵  =  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  →  ( 𝐴  ≤  𝐵  ↔  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 ) ) ) | 
						
							| 81 | 79 80 | ifboth | ⊢ ( ( 𝐴  ≤  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 ) ) | 
						
							| 82 | 77 78 81 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 ) ) | 
						
							| 83 |  | min2 | ⊢ ( ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ≤  𝐵 ) | 
						
							| 84 | 33 34 83 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ≤  𝐵 ) | 
						
							| 85 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ℝ  ∧  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ≤  𝐵 ) ) ) | 
						
							| 86 | 1 2 85 | syl2anc | ⊢ ( 𝜑  →  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ℝ  ∧  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ≤  𝐵 ) ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ℝ  ∧  𝐴  ≤  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ≤  𝐵 ) ) ) | 
						
							| 88 | 35 82 84 87 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 89 | 22 88 | sseldd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ∪  𝑈 ) | 
						
							| 90 |  | eluni2 | ⊢ ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ∪  𝑈  ↔  ∃ 𝑥  ∈  𝑈 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) | 
						
							| 91 | 89 90 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑥  ∈  𝑈 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) | 
						
							| 92 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑥  ∈  𝑈  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 93 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑥  ∈  𝑈  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) | 
						
							| 94 | 88 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑥  ∈  𝑈  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 95 |  | inelcm | ⊢ ( ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 96 | 93 94 95 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑥  ∈  𝑈  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) )  →  ( 𝑥  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 97 |  | ineq1 | ⊢ ( 𝑢  =  𝑥  →  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑥  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 98 | 97 | neeq1d | ⊢ ( 𝑢  =  𝑥  →  ( ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅  ↔  ( 𝑥  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 99 | 98 10 | elrab2 | ⊢ ( 𝑥  ∈  𝑇  ↔  ( 𝑥  ∈  𝑈  ∧  ( 𝑥  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 100 | 92 96 99 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  ( 𝑥  ∈  𝑈  ∧  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) )  →  𝑥  ∈  𝑇 ) | 
						
							| 101 | 91 100 93 | reximssdv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ∃ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) | 
						
							| 102 | 101 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ∃ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 ) | 
						
							| 103 |  | eleq2 | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑡 )  →  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥  ↔  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 104 | 103 | ac6sfi | ⊢ ( ( 𝑇  ∈  Fin  ∧  ∀ 𝑡  ∈  𝑇 ∃ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  𝑥 )  →  ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 105 | 21 102 104 | syl2anc | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  →  ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 107 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑡  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) )  =  ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) | 
						
							| 108 | 107 | fveq2d | ⊢ ( 𝑥  =  𝑡  →  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  =  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) | 
						
							| 109 | 108 | breq1d | ⊢ ( 𝑥  =  𝑡  →  ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵  ↔  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ) ) | 
						
							| 110 | 109 108 | ifbieq1d | ⊢ ( 𝑥  =  𝑡  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  =  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 ) ) | 
						
							| 111 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( ℎ ‘ 𝑥 )  =  ( ℎ ‘ 𝑡 ) ) | 
						
							| 112 | 110 111 | eleq12d | ⊢ ( 𝑥  =  𝑡  →  ( if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 )  ↔  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) ) | 
						
							| 113 | 112 | cbvralvw | ⊢ ( ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 )  ↔  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) | 
						
							| 114 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 115 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐵  ∈  ℝ ) | 
						
							| 116 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 117 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐹 : ℕ ⟶ (  ≤   ∩  ( ℝ  ×  ℝ ) ) ) | 
						
							| 118 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝑈  ∈  ( 𝒫  ran  ( (,)  ∘  𝐹 )  ∩  Fin ) ) | 
						
							| 119 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ∪  𝑈 ) | 
						
							| 120 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐺 : 𝑈 ⟶ ℕ ) | 
						
							| 121 | 9 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  ∧  𝑡  ∈  𝑈 )  →  ( ( (,)  ∘  𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  𝑡 ) | 
						
							| 122 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  ℎ : 𝑇 ⟶ 𝑇 ) | 
						
							| 123 |  | simprrr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) | 
						
							| 124 | 112 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 )  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) | 
						
							| 125 | 123 124 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  ∧  𝑡  ∈  𝑇 )  →  if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) ) | 
						
							| 126 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐴  ∈  𝑧 ) | 
						
							| 127 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝑧  ∈  𝑈 ) | 
						
							| 128 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 129 |  | inelcm | ⊢ ( ( 𝐴  ∈  𝑧  ∧  𝐴  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑧  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 130 | 126 128 129 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  ( 𝑧  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) | 
						
							| 131 |  | ineq1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  =  ( 𝑧  ∩  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 132 | 131 | neeq1d | ⊢ ( 𝑢  =  𝑧  →  ( ( 𝑢  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅  ↔  ( 𝑧  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 133 | 132 10 | elrab2 | ⊢ ( 𝑧  ∈  𝑇  ↔  ( 𝑧  ∈  𝑈  ∧  ( 𝑧  ∩  ( 𝐴 [,] 𝐵 ) )  ≠  ∅ ) ) | 
						
							| 134 | 127 130 133 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  𝑧  ∈  𝑇 ) | 
						
							| 135 |  | eqid | ⊢ seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) )  =  seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) | 
						
							| 136 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑚 )  =  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑛 ) ) | 
						
							| 137 | 136 | eleq2d | ⊢ ( 𝑚  =  𝑛  →  ( 𝐵  ∈  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑚 )  ↔  𝐵  ∈  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑛 ) ) ) | 
						
							| 138 | 137 | cbvrabv | ⊢ { 𝑚  ∈  ℕ  ∣  𝐵  ∈  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑚 ) }  =  { 𝑛  ∈  ℕ  ∣  𝐵  ∈  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑛 ) } | 
						
							| 139 |  | eqid | ⊢ inf ( { 𝑚  ∈  ℕ  ∣  𝐵  ∈  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑚 ) } ,  ℝ ,   <  )  =  inf ( { 𝑚  ∈  ℕ  ∣  𝐵  ∈  ( seq 1 ( ( ℎ  ∘  1st  ) ,  ( ℕ  ×  { 𝑧 } ) ) ‘ 𝑚 ) } ,  ℝ ,   <  ) | 
						
							| 140 | 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 | ovolicc2lem4 | ⊢ ( ( 𝜑  ∧  ( ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) ) )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 141 | 140 | anassrs | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  ∧  ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 ) ) )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 142 | 141 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  ∧  ℎ : 𝑇 ⟶ 𝑇 )  →  ( ∀ 𝑥  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑥 )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) ) | 
						
							| 143 | 113 142 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  ∧  ℎ : 𝑇 ⟶ 𝑇 )  →  ( ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) ) | 
						
							| 144 | 143 | expimpd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  →  ( ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) ) | 
						
							| 145 | 144 | exlimdv | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  →  ( ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇  ∧  ∀ 𝑡  ∈  𝑇 if ( ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) )  ≤  𝐵 ,  ( 2nd  ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ,  𝐵 )  ∈  ( ℎ ‘ 𝑡 ) )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) ) | 
						
							| 146 | 106 145 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝑈  ∧  𝐴  ∈  𝑧 ) )  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 147 | 17 146 | rexlimddv | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) |