Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ovolicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ovolicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
ovolicc2.4 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
5 |
|
ovolicc2.5 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
6 |
|
ovolicc2.6 |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) |
7 |
|
ovolicc2.7 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
8 |
|
ovolicc2.8 |
⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) |
9 |
|
ovolicc2.9 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
10 |
|
ovolicc2.10 |
⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } |
11 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
12 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
13 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
14 |
11 12 3 13
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
15 |
7 14
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ∪ 𝑈 ) |
16 |
|
eluni2 |
⊢ ( 𝐴 ∈ ∪ 𝑈 ↔ ∃ 𝑧 ∈ 𝑈 𝐴 ∈ 𝑧 ) |
17 |
15 16
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑈 𝐴 ∈ 𝑧 ) |
18 |
6
|
elin2d |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
19 |
10
|
ssrab3 |
⊢ 𝑇 ⊆ 𝑈 |
20 |
|
ssfi |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ∈ Fin ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
23 |
|
ineq1 |
⊢ ( 𝑢 = 𝑡 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
24 |
23
|
neeq1d |
⊢ ( 𝑢 = 𝑡 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
25 |
24 10
|
elrab2 |
⊢ ( 𝑡 ∈ 𝑇 ↔ ( 𝑡 ∈ 𝑈 ∧ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
26 |
25
|
simplbi |
⊢ ( 𝑡 ∈ 𝑇 → 𝑡 ∈ 𝑈 ) |
27 |
|
ffvelrn |
⊢ ( ( 𝐺 : 𝑈 ⟶ ℕ ∧ 𝑡 ∈ 𝑈 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) |
28 |
8 26 27
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) |
29 |
5
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
30 |
28 29
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
31 |
30
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) ) |
32 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
33 |
31 32
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
34 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐵 ∈ ℝ ) |
35 |
33 34
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ) |
36 |
25
|
simprbi |
⊢ ( 𝑡 ∈ 𝑇 → ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
38 |
|
n0 |
⊢ ( ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
39 |
37 38
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
40 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ∈ ℝ ) |
41 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
42 |
41
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) |
43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐵 ∈ ℝ ) |
44 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
45 |
1 43 44
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) ) |
46 |
42 45
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴 ≤ 𝑦 ∧ 𝑦 ≤ 𝐵 ) ) |
47 |
46
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ℝ ) |
48 |
31
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) ) |
49 |
48 32
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
50 |
46
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ≤ 𝑦 ) |
51 |
41
|
elin1d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ 𝑡 ) |
52 |
28
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) |
53 |
|
fvco3 |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐺 ‘ 𝑡 ) ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
54 |
5 52 53
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
55 |
26 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
56 |
55
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
57 |
|
1st2nd2 |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) = 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) |
58 |
48 57
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) = 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) ) |
60 |
|
df-ov |
⊢ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) 〉 ) |
61 |
59 60
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( (,) ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
62 |
54 56 61
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑡 = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
63 |
51 62
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
64 |
|
xp1st |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
65 |
48 64
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) |
66 |
|
rexr |
⊢ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ) |
67 |
|
rexr |
⊢ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ) |
68 |
|
elioo2 |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ* ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) |
69 |
66 67 68
|
syl2an |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) |
70 |
65 49 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) ) |
71 |
63 70
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) < 𝑦 ∧ 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
72 |
71
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
73 |
47 49 72
|
ltled |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
74 |
40 47 49 50 73
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑇 ∧ 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
75 |
74
|
expr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
76 |
75
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ) |
77 |
39 76
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
78 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ≤ 𝐵 ) |
79 |
|
breq2 |
⊢ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) → ( 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ↔ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) ) |
80 |
|
breq2 |
⊢ ( 𝐵 = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) ) |
81 |
79 80
|
ifboth |
⊢ ( ( 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) |
82 |
77 78 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) |
83 |
|
min2 |
⊢ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) |
84 |
33 34 83
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) |
85 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) ) |
86 |
1 2 85
|
syl2anc |
⊢ ( 𝜑 → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) ) |
88 |
35 82 84 87
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
89 |
22 88
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ∪ 𝑈 ) |
90 |
|
eluni2 |
⊢ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ∪ 𝑈 ↔ ∃ 𝑥 ∈ 𝑈 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
91 |
89 90
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑥 ∈ 𝑈 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
92 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝑈 ) |
93 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
94 |
88
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) |
95 |
|
inelcm |
⊢ ( ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
96 |
93 94 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
97 |
|
ineq1 |
⊢ ( 𝑢 = 𝑥 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
98 |
97
|
neeq1d |
⊢ ( 𝑢 = 𝑥 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
99 |
98 10
|
elrab2 |
⊢ ( 𝑥 ∈ 𝑇 ↔ ( 𝑥 ∈ 𝑈 ∧ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
100 |
92 96 99
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) ∧ ( 𝑥 ∈ 𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → 𝑥 ∈ 𝑇 ) |
101 |
91 100 93
|
reximssdv |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → ∃ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
102 |
101
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 ∃ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) |
103 |
|
eleq2 |
⊢ ( 𝑥 = ( ℎ ‘ 𝑡 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
104 |
103
|
ac6sfi |
⊢ ( ( 𝑇 ∈ Fin ∧ ∀ 𝑡 ∈ 𝑇 ∃ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) → ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
105 |
21 102 104
|
syl2anc |
⊢ ( 𝜑 → ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
107 |
|
2fveq3 |
⊢ ( 𝑥 = 𝑡 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) |
108 |
107
|
fveq2d |
⊢ ( 𝑥 = 𝑡 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) |
109 |
108
|
breq1d |
⊢ ( 𝑥 = 𝑡 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 ) ) |
110 |
109 108
|
ifbieq1d |
⊢ ( 𝑥 = 𝑡 → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ) |
111 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( ℎ ‘ 𝑥 ) = ( ℎ ‘ 𝑡 ) ) |
112 |
110 111
|
eleq12d |
⊢ ( 𝑥 = 𝑡 → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) ) |
113 |
112
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ↔ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) |
114 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ∈ ℝ ) |
115 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐵 ∈ ℝ ) |
116 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ≤ 𝐵 ) |
117 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
118 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) |
119 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
120 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐺 : 𝑈 ⟶ ℕ ) |
121 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
122 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ℎ : 𝑇 ⟶ 𝑇 ) |
123 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) |
124 |
112
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) |
125 |
123 124
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) |
126 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ∈ 𝑧 ) |
127 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝑧 ∈ 𝑈 ) |
128 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
129 |
|
inelcm |
⊢ ( ( 𝐴 ∈ 𝑧 ∧ 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
130 |
126 128 129
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
131 |
|
ineq1 |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ) |
132 |
131
|
neeq1d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
133 |
132 10
|
elrab2 |
⊢ ( 𝑧 ∈ 𝑇 ↔ ( 𝑧 ∈ 𝑈 ∧ ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
134 |
127 130 133
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → 𝑧 ∈ 𝑇 ) |
135 |
|
eqid |
⊢ seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) = seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) |
136 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) = ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) ) |
137 |
136
|
eleq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) ↔ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) ) ) |
138 |
137
|
cbvrabv |
⊢ { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) } |
139 |
|
eqid |
⊢ inf ( { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ℎ ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } , ℝ , < ) |
140 |
114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139
|
ovolicc2lem4 |
⊢ ( ( 𝜑 ∧ ( ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
141 |
140
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
142 |
141
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ℎ : 𝑇 ⟶ 𝑇 ) → ( ∀ 𝑥 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑥 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑥 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
143 |
113 142
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ℎ : 𝑇 ⟶ 𝑇 ) → ( ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
144 |
143
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ( ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
145 |
144
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ( ∃ ℎ ( ℎ : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( ℎ ‘ 𝑡 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) ) |
146 |
106 145
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝑈 ∧ 𝐴 ∈ 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
147 |
17 146
|
rexlimddv |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |