Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
2 |
|
icossre |
⊢ ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝐴 [,) +∞ ) ⊆ ℝ ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 [,) +∞ ) ⊆ ℝ ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝐴 [,) +∞ ) ⊆ ℝ ) |
5 |
|
ovolge0 |
⊢ ( ( 𝐴 [,) +∞ ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
7 |
|
mnflt0 |
⊢ -∞ < 0 |
8 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
9 |
|
0xr |
⊢ 0 ∈ ℝ* |
10 |
|
ovolcl |
⊢ ( ( 𝐴 [,) +∞ ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) |
11 |
3 10
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) |
13 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) ) |
14 |
8 9 12 13
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) ) |
15 |
7 14
|
mpani |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 0 ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) ) |
16 |
6 15
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) |
18 |
|
xrrebnd |
⊢ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) ) |
19 |
12 18
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) ) |
20 |
16 17 19
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ ) |
21 |
20
|
ltp1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) < ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
22 |
|
peano2re |
⊢ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ∈ ℝ ) |
23 |
20 22
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ∈ ℝ ) |
24 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 𝐴 ∈ ℝ ) |
25 |
23 24
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ∈ ℝ ) |
26 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 0 ∈ ℝ ) |
27 |
20
|
lep1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,) +∞ ) ) ≤ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
28 |
26 20 23 6 27
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 0 ≤ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
29 |
24 23
|
addge02d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 0 ≤ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ↔ 𝐴 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) |
30 |
28 29
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 𝐴 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) |
31 |
|
ovolicc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ∈ ℝ ∧ 𝐴 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) = ( ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) − 𝐴 ) ) |
32 |
24 25 30 31
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) = ( ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) − 𝐴 ) ) |
33 |
23
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ∈ ℂ ) |
34 |
24
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → 𝐴 ∈ ℂ ) |
35 |
33 34
|
pncand |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) − 𝐴 ) = ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
36 |
32 35
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) = ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
37 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ) |
38 |
24 25 37
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ) |
39 |
38
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) |
40 |
39
|
simp1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → 𝑥 ∈ ℝ ) |
41 |
39
|
simp2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → 𝐴 ≤ 𝑥 ) |
42 |
|
elicopnf |
⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ) ) ) |
44 |
40 41 43
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ∧ 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) → 𝑥 ∈ ( 𝐴 [,) +∞ ) ) |
45 |
44
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝑥 ∈ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) → 𝑥 ∈ ( 𝐴 [,) +∞ ) ) ) |
46 |
45
|
ssrdv |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ⊆ ( 𝐴 [,) +∞ ) ) |
47 |
|
ovolss |
⊢ ( ( ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ⊆ ( 𝐴 [,) +∞ ) ∧ ( 𝐴 [,) +∞ ) ⊆ ℝ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
48 |
46 4 47
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( vol* ‘ ( 𝐴 [,] ( ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) + 𝐴 ) ) ) ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
49 |
36 48
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ≤ ( vol* ‘ ( 𝐴 [,) +∞ ) ) ) |
50 |
23 20 49
|
lensymd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) → ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) + 1 ) ) |
51 |
21 50
|
pm2.65da |
⊢ ( 𝐴 ∈ ℝ → ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) |
52 |
|
nltpnft |
⊢ ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) |
53 |
11 52
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐴 [,) +∞ ) ) < +∞ ) ) |
54 |
51 53
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ ( 𝐴 [,) +∞ ) ) = +∞ ) |