Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliun.t |
⊢ 𝑇 = seq 1 ( + , 𝐺 ) |
2 |
|
ovoliun.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) |
3 |
|
ovoliun.a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
4 |
|
ovoliun.v |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
ovoliun2.t |
⊢ ( 𝜑 → 𝑇 ∈ dom ⇝ ) |
6 |
1 2 3 4
|
ovoliun |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
7 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
8 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
9 |
|
fvex |
⊢ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V |
10 |
|
nfcv |
⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) |
11 |
|
nfcv |
⊢ Ⅎ 𝑛 vol* |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
13 |
11 12
|
nffv |
⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
14 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
15 |
14
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( vol* ‘ 𝐴 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
16 |
10 13 15
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
17 |
2 16
|
eqtri |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
18 |
17
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ V ) → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
19 |
9 18
|
mpan2 |
⊢ ( 𝑚 ∈ ℕ → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
21 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ) |
22 |
10
|
nfel1 |
⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) ∈ ℝ |
23 |
13
|
nfel1 |
⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ |
24 |
15
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) ) |
25 |
22 23 24
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
26 |
21 25
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
27 |
26
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
28 |
20 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
29 |
7 8 28
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
30 |
1
|
feq1i |
⊢ ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
31 |
29 30
|
sylibr |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
32 |
31
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
33 |
|
1nn |
⊢ 1 ∈ ℕ |
34 |
31
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
35 |
33 34
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
36 |
35
|
ne0d |
⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
37 |
|
dm0rn0 |
⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) |
38 |
37
|
necon3bii |
⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
39 |
36 38
|
sylib |
⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
40 |
1 5
|
eqeltrrid |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) ∈ dom ⇝ ) |
41 |
7 8 20 27 40
|
isumrecl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
42 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑘 ) → 𝑚 ∈ ℕ ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → 𝑚 ∈ ℕ ) |
44 |
43 19
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( 𝐺 ‘ 𝑚 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
46 |
45 7
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
47 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝜑 ) |
48 |
47 42 27
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
49 |
48
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑘 ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℂ ) |
50 |
44 46 49
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) ) |
51 |
1
|
fveq1i |
⊢ ( 𝑇 ‘ 𝑘 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑘 ) |
52 |
50 51
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = ( 𝑇 ‘ 𝑘 ) ) |
53 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑘 ) ∈ Fin ) |
54 |
|
fz1ssnn |
⊢ ( 1 ... 𝑘 ) ⊆ ℕ |
55 |
54
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑘 ) ⊆ ℕ ) |
56 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) |
57 |
|
nfv |
⊢ Ⅎ 𝑚 𝐴 ⊆ ℝ |
58 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
59 |
12 58
|
nfss |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ |
60 |
14
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) ) |
61 |
57 59 60
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
62 |
56 61
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
63 |
62
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
64 |
|
ovolge0 |
⊢ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
65 |
63 64
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
66 |
7 8 53 55 20 27 65 40
|
isumless |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → Σ 𝑚 ∈ ( 1 ... 𝑘 ) ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
68 |
52 67
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
69 |
68
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
70 |
|
brralrspcev |
⊢ ( ( Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) |
71 |
41 69 70
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) |
72 |
31
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
73 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑇 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
74 |
73
|
ralrn |
⊢ ( 𝑇 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
75 |
72 74
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑇 ‘ 𝑘 ) ≤ 𝑥 ) ) |
77 |
71 76
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) |
78 |
|
supxrre |
⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑇 𝑧 ≤ 𝑥 ) → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
79 |
32 39 77 78
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = sup ( ran 𝑇 , ℝ , < ) ) |
80 |
7 1 8 20 27 65 71
|
isumsup |
⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) = sup ( ran 𝑇 , ℝ , < ) ) |
81 |
79 80
|
eqtr4d |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
82 |
10 13 15
|
cbvsumi |
⊢ Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) = Σ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
83 |
81 82
|
eqtr4di |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) = Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ) |
84 |
6 83
|
breqtrd |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ Σ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ) |