Step |
Hyp |
Ref |
Expression |
1 |
|
ovoliun.t |
⊢ 𝑇 = seq 1 ( + , 𝐺 ) |
2 |
|
ovoliun.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) |
3 |
|
ovoliun.a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
4 |
|
ovoliun.v |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
ovoliun.r |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
6 |
|
ovoliun.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
7 |
|
ovoliun.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
8 |
|
ovoliun.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
9 |
|
ovoliun.h |
⊢ 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ) |
10 |
|
ovoliun.j |
⊢ ( 𝜑 → 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) |
11 |
|
ovoliun.f |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
12 |
|
ovoliun.x1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
13 |
|
ovoliun.x2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
14 |
|
ovoliun.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
15 |
|
ovoliun.l1 |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
16 |
|
ovoliun.l2 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) |
17 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
18 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 2nd ‘ 𝑗 ) = ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) |
19 |
17 18
|
fveq12d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
21 |
19
|
fveq2d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
22 |
20 21
|
oveq12d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
23 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin ) |
24 |
|
f1of1 |
⊢ ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ) |
25 |
10 24
|
syl |
⊢ ( 𝜑 → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ) |
26 |
|
fz1ssnn |
⊢ ( 1 ... 𝐾 ) ⊆ ℕ |
27 |
|
f1ores |
⊢ ( ( 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
28 |
25 26 27
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
29 |
|
fvres |
⊢ ( 𝑚 ∈ ( 1 ... 𝐾 ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽 ‘ 𝑚 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽 ‘ 𝑚 ) ) |
31 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
32 |
|
imassrn |
⊢ ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran 𝐽 |
33 |
|
f1of |
⊢ ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ) |
34 |
10 33
|
syl |
⊢ ( 𝜑 → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ) |
35 |
34
|
frnd |
⊢ ( 𝜑 → ran 𝐽 ⊆ ( ℕ × ℕ ) ) |
36 |
32 35
|
sstrid |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) ) |
37 |
36
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝑗 ∈ ( ℕ × ℕ ) ) |
38 |
|
xp1st |
⊢ ( 𝑗 ∈ ( ℕ × ℕ ) → ( 1st ‘ 𝑗 ) ∈ ℕ ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ℕ ) |
40 |
31 39
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
41 |
|
elovolmlem |
⊢ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
42 |
40 41
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
43 |
|
xp2nd |
⊢ ( 𝑗 ∈ ( ℕ × ℕ ) → ( 2nd ‘ 𝑗 ) ∈ ℕ ) |
44 |
37 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ 𝑗 ) ∈ ℕ ) |
45 |
42 44
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
46 |
45
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) ) |
47 |
|
xp2nd |
⊢ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
49 |
|
xp1st |
⊢ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
50 |
46 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
51 |
48 50
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
52 |
51
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
53 |
22 23 28 30 52
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
54 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
55 |
34
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) ) |
56 |
|
xp1st |
⊢ ( ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
58 |
54 57
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
59 |
|
elovolmlem |
⊢ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
60 |
58 59
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
61 |
|
xp2nd |
⊢ ( ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
62 |
55 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
63 |
60 62
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
64 |
63 9
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
65 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝐾 ) → 𝑚 ∈ ℕ ) |
66 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) |
67 |
66
|
ovolfsval |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ) |
68 |
64 65 67
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ) |
69 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → 𝑚 ∈ ℕ ) |
70 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑚 → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) |
71 |
70
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
72 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑚 → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) |
73 |
71 72
|
fveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
74 |
|
fvex |
⊢ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ∈ V |
75 |
73 9 74
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝐻 ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
76 |
69 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
77 |
76
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
78 |
76
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
79 |
77 78
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
80 |
68 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
81 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
82 |
14 81
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
83 |
|
ffvelrn |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
84 |
64 65 83
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
85 |
84
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) ) |
86 |
|
xp2nd |
⊢ ( ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
87 |
85 86
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
88 |
|
xp1st |
⊢ ( ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
89 |
85 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
90 |
87 89
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ∈ ℝ ) |
91 |
90
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ∈ ℂ ) |
92 |
79 91
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ∈ ℂ ) |
93 |
80 82 92
|
fsumser |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) ) |
94 |
53 93
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) ) |
95 |
8
|
fveq1i |
⊢ ( 𝑈 ‘ 𝐾 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) |
96 |
94 95
|
eqtr4di |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( 𝑈 ‘ 𝐾 ) ) |
97 |
|
f1oeng |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
98 |
23 28 97
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
99 |
98
|
ensymd |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) |
100 |
|
enfii |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin ) |
101 |
23 99 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin ) |
102 |
101 51
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
103 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐿 ) ∈ Fin ) |
104 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → 𝑛 ∈ ℕ ) |
105 |
104 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
106 |
103 105
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ℝ ) |
107 |
6
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
108 |
|
2nn |
⊢ 2 ∈ ℕ |
109 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
110 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
111 |
108 109 110
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
112 |
104 111
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
113 |
|
nndivre |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
114 |
107 112 113
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
115 |
103 114
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
116 |
106 115
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
117 |
5 107
|
readdcld |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ∈ ℝ ) |
118 |
|
relxp |
⊢ Rel ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
119 |
|
relres |
⊢ Rel ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) |
120 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑛 } → 𝑥 = 𝑛 ) |
121 |
120
|
opeq1d |
⊢ ( 𝑥 ∈ { 𝑛 } → 〈 𝑥 , 𝑦 〉 = 〈 𝑛 , 𝑦 〉 ) |
122 |
121
|
eleq1d |
⊢ ( 𝑥 ∈ { 𝑛 } → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 〈 𝑛 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
123 |
|
vex |
⊢ 𝑛 ∈ V |
124 |
|
vex |
⊢ 𝑦 ∈ V |
125 |
123 124
|
elimasn |
⊢ ( 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ↔ 〈 𝑛 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
126 |
122 125
|
bitr4di |
⊢ ( 𝑥 ∈ { 𝑛 } → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
127 |
126
|
pm5.32i |
⊢ ( ( 𝑥 ∈ { 𝑛 } ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
128 |
124
|
opelresi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
129 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
130 |
127 128 129
|
3bitr4ri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ) |
131 |
118 119 130
|
eqrelriiv |
⊢ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) |
132 |
|
df-res |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) |
133 |
131 132
|
eqtri |
⊢ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) |
134 |
133
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) ) |
135 |
134
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) ) |
136 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) |
137 |
135 136
|
eqtrdi |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) ) |
138 |
|
relxp |
⊢ Rel ( ℕ × ℕ ) |
139 |
|
relss |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ( Rel ( ℕ × ℕ ) → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
140 |
36 138 139
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
141 |
34
|
ffnd |
⊢ ( 𝜑 → 𝐽 Fn ℕ ) |
142 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑤 ) → ( 1st ‘ 𝑗 ) = ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ) |
143 |
142
|
breq1d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑤 ) → ( ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
144 |
143
|
ralima |
⊢ ( ( 𝐽 Fn ℕ ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
145 |
141 26 144
|
sylancl |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
146 |
16 145
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ) |
147 |
146
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ≤ 𝐿 ) |
148 |
39 81
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
149 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐿 ∈ ℤ ) |
150 |
|
elfz5 |
⊢ ( ( ( 1st ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝐿 ∈ ℤ ) → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st ‘ 𝑗 ) ≤ 𝐿 ) ) |
151 |
148 149 150
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st ‘ 𝑗 ) ≤ 𝐿 ) ) |
152 |
147 151
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ) |
153 |
152
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ) |
154 |
|
vex |
⊢ 𝑥 ∈ V |
155 |
154 124
|
op1std |
⊢ ( 𝑗 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑗 ) = 𝑥 ) |
156 |
155
|
eleq1d |
⊢ ( 𝑗 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
157 |
156
|
rspccv |
⊢ ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
158 |
153 157
|
syl |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
159 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) ) |
160 |
124
|
biantru |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) ) |
161 |
|
iunid |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } = ( 1 ... 𝐿 ) |
162 |
161
|
eleq2i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) |
163 |
159 160 162
|
3bitr2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) |
164 |
158 163
|
syl6ibr |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) ) |
165 |
140 164
|
relssdv |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) |
166 |
|
xpiundir |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) = ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) |
167 |
165 166
|
sseqtrdi |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) |
168 |
|
df-ss |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ↔ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
169 |
167 168
|
sylib |
⊢ ( 𝜑 → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
170 |
137 169
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
171 |
170 101
|
eqeltrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
172 |
|
ssiun2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
173 |
|
ssfi |
⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
174 |
171 172 173
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
175 |
|
2ndconst |
⊢ ( 𝑛 ∈ V → ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
176 |
175
|
elv |
⊢ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) |
177 |
|
f1oeng |
⊢ ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
178 |
174 176 177
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
179 |
178
|
ensymd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
180 |
|
enfii |
⊢ ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin ) |
181 |
174 179 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin ) |
182 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
183 |
11 104 182
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
184 |
|
elovolmlem |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
185 |
183 184
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
186 |
185
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
187 |
|
imassrn |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ran ( 𝐽 “ ( 1 ... 𝐾 ) ) |
188 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) ) |
189 |
|
rnss |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) ) |
190 |
188 189
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) ) |
191 |
|
rnxpid |
⊢ ran ( ℕ × ℕ ) = ℕ |
192 |
190 191
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ℕ ) |
193 |
187 192
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ℕ ) |
194 |
193
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) → 𝑖 ∈ ℕ ) ) |
195 |
194
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → 𝑖 ∈ ℕ ) |
196 |
186 195
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
197 |
196
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) ) |
198 |
|
xp2nd |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
199 |
197 198
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
200 |
|
xp1st |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
201 |
197 200
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
202 |
199 201
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
203 |
202
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
204 |
181 203
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
205 |
107 111 113
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
206 |
4 205
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
207 |
104 206
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
208 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) |
209 |
208 7
|
ovolsf |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
210 |
185 209
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
211 |
210
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
212 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
213 |
211 212
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ* ) |
214 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
215 |
213 214
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
216 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
217 |
216
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ ∈ ℝ* ) |
218 |
105
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
219 |
105
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < ( vol* ‘ 𝐴 ) ) |
220 |
104 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
221 |
7
|
ovollb |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
222 |
185 220 221
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
223 |
217 218 215 219 222
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
224 |
104 13
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
225 |
|
xrre |
⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
226 |
215 207 223 224 225
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
227 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ ℤ ) |
228 |
208
|
ovolfsval |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
229 |
185 228
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
230 |
208
|
ovolfsf |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
231 |
185 230
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
232 |
231
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) ∈ ( 0 [,) +∞ ) ) |
233 |
229 232
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ) |
234 |
|
elrege0 |
⊢ ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) ) |
235 |
233 234
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) ) |
236 |
235
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
237 |
235
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
238 |
|
supxrub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
239 |
213 238
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
240 |
239
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
241 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
242 |
226 240 241
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
243 |
210
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 Fn ℕ ) |
244 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
245 |
244
|
ralrn |
⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
246 |
243 245
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
247 |
246
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
248 |
242 247
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) |
249 |
81 7 227 229 236 237 248
|
isumsup2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
250 |
7 249
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
251 |
|
climrel |
⊢ Rel ⇝ |
252 |
251
|
releldmi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
253 |
250 252
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
254 |
81 227 181 193 229 236 237 253
|
isumless |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
255 |
81 7 227 229 236 237 248
|
isumsup |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ , < ) ) |
256 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
257 |
211 256
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ ) |
258 |
|
1nn |
⊢ 1 ∈ ℕ |
259 |
210
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 = ℕ ) |
260 |
258 259
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ dom 𝑆 ) |
261 |
260
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 ≠ ∅ ) |
262 |
|
dm0rn0 |
⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) |
263 |
262
|
necon3bii |
⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
264 |
261 263
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ≠ ∅ ) |
265 |
|
supxrre |
⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
266 |
257 264 242 265
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
267 |
255 266
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
268 |
254 267
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
269 |
204 226 207 268 224
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
270 |
103 204 207 269
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
271 |
|
vex |
⊢ 𝑖 ∈ V |
272 |
123 271
|
op1std |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 1st ‘ 𝑗 ) = 𝑛 ) |
273 |
272
|
fveq2d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
274 |
123 271
|
op2ndd |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 2nd ‘ 𝑗 ) = 𝑖 ) |
275 |
273 274
|
fveq12d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) |
276 |
275
|
fveq2d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
277 |
275
|
fveq2d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
278 |
276 277
|
oveq12d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
279 |
202
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℂ ) |
280 |
278 103 181 279
|
fsum2d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
281 |
170
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
282 |
280 281
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
283 |
105
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
284 |
114
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
285 |
103 283 284
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
286 |
270 282 285
|
3brtr3d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
287 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
288 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
289 |
2
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
290 |
288 4 289
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
291 |
290 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
292 |
81 287 291
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
293 |
1
|
feq1i |
⊢ ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
294 |
292 293
|
sylibr |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
295 |
294
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
296 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
297 |
295 296
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
298 |
104 290
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
299 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
300 |
|
ffvelrn |
⊢ ( ( 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ∧ 1 ∈ ℕ ) → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) ) |
301 |
34 258 300
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) ) |
302 |
|
xp1st |
⊢ ( ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ ) |
303 |
301 302
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ ) |
304 |
303
|
nnred |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℝ ) |
305 |
15
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
306 |
303
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ) |
307 |
|
2fveq3 |
⊢ ( 𝑤 = 1 → ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) = ( 1st ‘ ( 𝐽 ‘ 1 ) ) ) |
308 |
307
|
breq1d |
⊢ ( 𝑤 = 1 → ( ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) ) |
309 |
|
eluzfz1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
310 |
82 309
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝐾 ) ) |
311 |
308 16 310
|
rspcdva |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) |
312 |
299 304 305 306 311
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝐿 ) |
313 |
|
elnnz1 |
⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 1 ≤ 𝐿 ) ) |
314 |
15 312 313
|
sylanbrc |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
315 |
314 81
|
eleqtrdi |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) |
316 |
298 315 283
|
fsumser |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ) |
317 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
318 |
287 317
|
syl |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
319 |
|
fnfvelrn |
⊢ ( ( seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) ) |
320 |
318 315 319
|
syl2anc |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) ) |
321 |
1
|
rneqi |
⊢ ran 𝑇 = ran seq 1 ( + , 𝐺 ) |
322 |
320 321
|
eleqtrrdi |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran 𝑇 ) |
323 |
316 322
|
eqeltrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) |
324 |
|
supxrub |
⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
325 |
297 323 324
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
326 |
107
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
327 |
|
geo2sum |
⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ) |
328 |
314 326 327
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ) |
329 |
314
|
nnnn0d |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
330 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐿 ∈ ℕ0 ) → ( 2 ↑ 𝐿 ) ∈ ℕ ) |
331 |
108 329 330
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℕ ) |
332 |
331
|
nnrpd |
⊢ ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℝ+ ) |
333 |
6 332
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ+ ) |
334 |
333
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) |
335 |
107 331
|
nndivred |
⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ ) |
336 |
107 335
|
subge02d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ↔ ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) ) |
337 |
334 336
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) |
338 |
328 337
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ≤ 𝐵 ) |
339 |
106 115 5 107 325 338
|
le2addd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
340 |
102 116 117 286 339
|
letrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
341 |
96 340
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐾 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |