Metamath Proof Explorer


Theorem ovoliunlem1

Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses ovoliun.t 𝑇 = seq 1 ( + , 𝐺 )
ovoliun.g 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) )
ovoliun.a ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ )
ovoliun.v ( ( 𝜑𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
ovoliun.r ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
ovoliun.b ( 𝜑𝐵 ∈ ℝ+ )
ovoliun.s 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) )
ovoliun.u 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) )
ovoliun.h 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑘 ) ) ) )
ovoliun.j ( 𝜑𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) )
ovoliun.f ( 𝜑𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
ovoliun.x1 ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ran ( (,) ∘ ( 𝐹𝑛 ) ) )
ovoliun.x2 ( ( 𝜑𝑛 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
ovoliun.k ( 𝜑𝐾 ∈ ℕ )
ovoliun.l1 ( 𝜑𝐿 ∈ ℤ )
ovoliun.l2 ( 𝜑 → ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽𝑤 ) ) ≤ 𝐿 )
Assertion ovoliunlem1 ( 𝜑 → ( 𝑈𝐾 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ovoliun.t 𝑇 = seq 1 ( + , 𝐺 )
2 ovoliun.g 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) )
3 ovoliun.a ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ )
4 ovoliun.v ( ( 𝜑𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
5 ovoliun.r ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
6 ovoliun.b ( 𝜑𝐵 ∈ ℝ+ )
7 ovoliun.s 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) )
8 ovoliun.u 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) )
9 ovoliun.h 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑘 ) ) ) )
10 ovoliun.j ( 𝜑𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) )
11 ovoliun.f ( 𝜑𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
12 ovoliun.x1 ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ran ( (,) ∘ ( 𝐹𝑛 ) ) )
13 ovoliun.x2 ( ( 𝜑𝑛 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
14 ovoliun.k ( 𝜑𝐾 ∈ ℕ )
15 ovoliun.l1 ( 𝜑𝐿 ∈ ℤ )
16 ovoliun.l2 ( 𝜑 → ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽𝑤 ) ) ≤ 𝐿 )
17 2fveq3 ( 𝑗 = ( 𝐽𝑚 ) → ( 𝐹 ‘ ( 1st𝑗 ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) )
18 fveq2 ( 𝑗 = ( 𝐽𝑚 ) → ( 2nd𝑗 ) = ( 2nd ‘ ( 𝐽𝑚 ) ) )
19 17 18 fveq12d ( 𝑗 = ( 𝐽𝑚 ) → ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) )
20 19 fveq2d ( 𝑗 = ( 𝐽𝑚 ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) )
21 19 fveq2d ( 𝑗 = ( 𝐽𝑚 ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) )
22 20 21 oveq12d ( 𝑗 = ( 𝐽𝑚 ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) ) )
23 fzfid ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin )
24 f1of1 ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) )
25 10 24 syl ( 𝜑𝐽 : ℕ –1-1→ ( ℕ × ℕ ) )
26 fz1ssnn ( 1 ... 𝐾 ) ⊆ ℕ
27 f1ores ( ( 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) )
28 25 26 27 sylancl ( 𝜑 → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) )
29 fvres ( 𝑚 ∈ ( 1 ... 𝐾 ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽𝑚 ) )
30 29 adantl ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽𝑚 ) )
31 11 adantr ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
32 imassrn ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran 𝐽
33 f1of ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) )
34 10 33 syl ( 𝜑𝐽 : ℕ ⟶ ( ℕ × ℕ ) )
35 34 frnd ( 𝜑 → ran 𝐽 ⊆ ( ℕ × ℕ ) )
36 32 35 sstrid ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) )
37 36 sselda ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝑗 ∈ ( ℕ × ℕ ) )
38 xp1st ( 𝑗 ∈ ( ℕ × ℕ ) → ( 1st𝑗 ) ∈ ℕ )
39 37 38 syl ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st𝑗 ) ∈ ℕ )
40 31 39 ffvelrnd ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
41 elovolmlem ( ( 𝐹 ‘ ( 1st𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
42 40 41 sylib ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
43 xp2nd ( 𝑗 ∈ ( ℕ × ℕ ) → ( 2nd𝑗 ) ∈ ℕ )
44 37 43 syl ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd𝑗 ) ∈ ℕ )
45 42 44 ffvelrnd ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
46 45 elin2d ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ∈ ( ℝ × ℝ ) )
47 xp2nd ( ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ∈ ℝ )
48 46 47 syl ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ∈ ℝ )
49 xp1st ( ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ∈ ℝ )
50 46 49 syl ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ∈ ℝ )
51 48 50 resubcld ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) ∈ ℝ )
52 51 recnd ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) ∈ ℂ )
53 22 23 28 30 52 fsumf1o ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) ) )
54 11 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
55 34 ffvelrnda ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐽𝑘 ) ∈ ( ℕ × ℕ ) )
56 xp1st ( ( 𝐽𝑘 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽𝑘 ) ) ∈ ℕ )
57 55 56 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐽𝑘 ) ) ∈ ℕ )
58 54 57 ffvelrnd ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
59 elovolmlem ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
60 58 59 sylib ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
61 xp2nd ( ( 𝐽𝑘 ) ∈ ( ℕ × ℕ ) → ( 2nd ‘ ( 𝐽𝑘 ) ) ∈ ℕ )
62 55 61 syl ( ( 𝜑𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐽𝑘 ) ) ∈ ℕ )
63 60 62 ffvelrnd ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑘 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
64 63 9 fmptd ( 𝜑𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
65 elfznn ( 𝑚 ∈ ( 1 ... 𝐾 ) → 𝑚 ∈ ℕ )
66 eqid ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 )
67 66 ovolfsval ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻𝑚 ) ) − ( 1st ‘ ( 𝐻𝑚 ) ) ) )
68 64 65 67 syl2an ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻𝑚 ) ) − ( 1st ‘ ( 𝐻𝑚 ) ) ) )
69 65 adantl ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → 𝑚 ∈ ℕ )
70 2fveq3 ( 𝑘 = 𝑚 → ( 1st ‘ ( 𝐽𝑘 ) ) = ( 1st ‘ ( 𝐽𝑚 ) ) )
71 70 fveq2d ( 𝑘 = 𝑚 → ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) )
72 2fveq3 ( 𝑘 = 𝑚 → ( 2nd ‘ ( 𝐽𝑘 ) ) = ( 2nd ‘ ( 𝐽𝑚 ) ) )
73 71 72 fveq12d ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑘 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) )
74 fvex ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ∈ V
75 73 9 74 fvmpt ( 𝑚 ∈ ℕ → ( 𝐻𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) )
76 69 75 syl ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) )
77 76 fveq2d ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻𝑚 ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) )
78 76 fveq2d ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻𝑚 ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) )
79 77 78 oveq12d ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻𝑚 ) ) − ( 1st ‘ ( 𝐻𝑚 ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) ) )
80 68 79 eqtrd ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) ) )
81 nnuz ℕ = ( ℤ ‘ 1 )
82 14 81 eleqtrdi ( 𝜑𝐾 ∈ ( ℤ ‘ 1 ) )
83 ffvelrn ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐻𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
84 64 65 83 syl2an ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
85 84 elin2d ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻𝑚 ) ∈ ( ℝ × ℝ ) )
86 xp2nd ( ( 𝐻𝑚 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐻𝑚 ) ) ∈ ℝ )
87 85 86 syl ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻𝑚 ) ) ∈ ℝ )
88 xp1st ( ( 𝐻𝑚 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐻𝑚 ) ) ∈ ℝ )
89 85 88 syl ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻𝑚 ) ) ∈ ℝ )
90 87 89 resubcld ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻𝑚 ) ) − ( 1st ‘ ( 𝐻𝑚 ) ) ) ∈ ℝ )
91 90 recnd ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻𝑚 ) ) − ( 1st ‘ ( 𝐻𝑚 ) ) ) ∈ ℂ )
92 79 91 eqeltrrd ( ( 𝜑𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) ) ∈ ℂ )
93 80 82 92 fsumser ( 𝜑 → Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽𝑚 ) ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) )
94 53 93 eqtrd ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) )
95 8 fveq1i ( 𝑈𝐾 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 )
96 94 95 eqtr4di ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) = ( 𝑈𝐾 ) )
97 f1oeng ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) )
98 23 28 97 syl2anc ( 𝜑 → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) )
99 98 ensymd ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) )
100 enfii ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin )
101 23 99 100 syl2anc ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin )
102 101 51 fsumrecl ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) ∈ ℝ )
103 fzfid ( 𝜑 → ( 1 ... 𝐿 ) ∈ Fin )
104 elfznn ( 𝑛 ∈ ( 1 ... 𝐿 ) → 𝑛 ∈ ℕ )
105 104 4 sylan2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
106 103 105 fsumrecl ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ℝ )
107 6 rpred ( 𝜑𝐵 ∈ ℝ )
108 2nn 2 ∈ ℕ
109 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
110 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
111 108 109 110 sylancr ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ )
112 104 111 syl ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
113 nndivre ( ( 𝐵 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
114 107 112 113 syl2an ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
115 103 114 fsumrecl ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
116 106 115 readdcld ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
117 5 107 readdcld ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ∈ ℝ )
118 relxp Rel ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) )
119 relres Rel ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } )
120 elsni ( 𝑥 ∈ { 𝑛 } → 𝑥 = 𝑛 )
121 120 opeq1d ( 𝑥 ∈ { 𝑛 } → ⟨ 𝑥 , 𝑦 ⟩ = ⟨ 𝑛 , 𝑦 ⟩ )
122 121 eleq1d ( 𝑥 ∈ { 𝑛 } → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ ⟨ 𝑛 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) )
123 vex 𝑛 ∈ V
124 vex 𝑦 ∈ V
125 123 124 elimasn ( 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ↔ ⟨ 𝑛 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) )
126 122 125 bitr4di ( 𝑥 ∈ { 𝑛 } → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) )
127 126 pm5.32i ( ( 𝑥 ∈ { 𝑛 } ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) )
128 124 opelresi ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) )
129 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) )
130 127 128 129 3bitr4ri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) )
131 118 119 130 eqrelriiv ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } )
132 df-res ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) )
133 131 132 eqtri ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) )
134 133 a1i ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) )
135 134 iuneq2dv ( 𝜑 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) )
136 iunin2 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) )
137 135 136 eqtrdi ( 𝜑 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) )
138 relxp Rel ( ℕ × ℕ )
139 relss ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ( Rel ( ℕ × ℕ ) → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) )
140 36 138 139 mpisyl ( 𝜑 → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) )
141 34 ffnd ( 𝜑𝐽 Fn ℕ )
142 fveq2 ( 𝑗 = ( 𝐽𝑤 ) → ( 1st𝑗 ) = ( 1st ‘ ( 𝐽𝑤 ) ) )
143 142 breq1d ( 𝑗 = ( 𝐽𝑤 ) → ( ( 1st𝑗 ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽𝑤 ) ) ≤ 𝐿 ) )
144 143 ralima ( ( 𝐽 Fn ℕ ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽𝑤 ) ) ≤ 𝐿 ) )
145 141 26 144 sylancl ( 𝜑 → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽𝑤 ) ) ≤ 𝐿 ) )
146 16 145 mpbird ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st𝑗 ) ≤ 𝐿 )
147 146 r19.21bi ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st𝑗 ) ≤ 𝐿 )
148 39 81 eleqtrdi ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st𝑗 ) ∈ ( ℤ ‘ 1 ) )
149 15 adantr ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐿 ∈ ℤ )
150 elfz5 ( ( ( 1st𝑗 ) ∈ ( ℤ ‘ 1 ) ∧ 𝐿 ∈ ℤ ) → ( ( 1st𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st𝑗 ) ≤ 𝐿 ) )
151 148 149 150 syl2anc ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 1st𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st𝑗 ) ≤ 𝐿 ) )
152 147 151 mpbird ( ( 𝜑𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st𝑗 ) ∈ ( 1 ... 𝐿 ) )
153 152 ralrimiva ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st𝑗 ) ∈ ( 1 ... 𝐿 ) )
154 vex 𝑥 ∈ V
155 154 124 op1std ( 𝑗 = ⟨ 𝑥 , 𝑦 ⟩ → ( 1st𝑗 ) = 𝑥 )
156 155 eleq1d ( 𝑗 = ⟨ 𝑥 , 𝑦 ⟩ → ( ( 1st𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) )
157 156 rspccv ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st𝑗 ) ∈ ( 1 ... 𝐿 ) → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) )
158 153 157 syl ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) )
159 opelxp ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ ( 𝑥 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) )
160 124 biantru ( 𝑥 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ ( 𝑥 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) )
161 iunid 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } = ( 1 ... 𝐿 )
162 161 eleq2i ( 𝑥 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ 𝑥 ∈ ( 1 ... 𝐿 ) )
163 159 160 162 3bitr2i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) )
164 158 163 syl6ibr ( 𝜑 → ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → ⟨ 𝑥 , 𝑦 ⟩ ∈ ( 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) )
165 140 164 relssdv ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) )
166 xpiundir ( 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) = 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V )
167 165 166 sseqtrdi ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) )
168 df-ss ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ↔ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) )
169 167 168 sylib ( 𝜑 → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) )
170 137 169 eqtrd ( 𝜑 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) )
171 170 101 eqeltrd ( 𝜑 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin )
172 ssiun2 ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) )
173 ssfi ( ( 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin )
174 171 172 173 syl2an ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin )
175 2ndconst ( 𝑛 ∈ V → ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) )
176 175 elv ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } )
177 f1oeng ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) )
178 174 176 177 sylancl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) )
179 178 ensymd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) )
180 enfii ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin )
181 174 179 180 syl2anc ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin )
182 ffvelrn ( ( 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
183 11 104 182 syl2an ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
184 elovolmlem ( ( 𝐹𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
185 183 184 sylib ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
186 185 adantrr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
187 imassrn ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ran ( 𝐽 “ ( 1 ... 𝐾 ) )
188 36 adantr ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) )
189 rnss ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) )
190 188 189 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) )
191 rnxpid ran ( ℕ × ℕ ) = ℕ
192 190 191 sseqtrdi ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ℕ )
193 187 192 sstrid ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ℕ )
194 193 sseld ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) → 𝑖 ∈ ℕ ) )
195 194 impr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → 𝑖 ∈ ℕ )
196 186 195 ffvelrnd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
197 196 elin2d ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) )
198 xp2nd ( ( ( 𝐹𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ∈ ℝ )
199 197 198 syl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ∈ ℝ )
200 xp1st ( ( ( 𝐹𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ∈ ℝ )
201 197 200 syl ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ∈ ℝ )
202 199 201 resubcld ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ )
203 202 anassrs ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ )
204 181 203 fsumrecl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ )
205 107 111 113 syl2an ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ )
206 4 205 readdcld ( ( 𝜑𝑛 ∈ ℕ ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
207 104 206 sylan2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ )
208 eqid ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) )
209 208 7 ovolsf ( ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) )
210 185 209 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) )
211 210 frnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) )
212 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
213 211 212 sstrdi ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ* )
214 supxrcl ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* )
215 213 214 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* )
216 mnfxr -∞ ∈ ℝ*
217 216 a1i ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ ∈ ℝ* )
218 105 rexrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* )
219 105 mnfltd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < ( vol* ‘ 𝐴 ) )
220 104 12 sylan2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝐴 ran ( (,) ∘ ( 𝐹𝑛 ) ) )
221 7 ovollb ( ( ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ran ( (,) ∘ ( 𝐹𝑛 ) ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
222 185 220 221 syl2anc ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
223 217 218 215 219 222 xrltletrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < sup ( ran 𝑆 , ℝ* , < ) )
224 104 13 sylan2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
225 xrre ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ )
226 215 207 223 224 225 syl22anc ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ )
227 1zzd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ ℤ )
228 208 ovolfsval ( ( ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) )
229 185 228 sylan ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) )
230 208 ovolfsf ( ( 𝐹𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
231 185 230 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
232 231 ffvelrnda ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ‘ 𝑖 ) ∈ ( 0 [,) +∞ ) )
233 229 232 eqeltrrd ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) )
234 elrege0 ( ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ) )
235 233 234 sylib ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ) )
236 235 simpld ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ )
237 235 simprd ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → 0 ≤ ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) )
238 supxrub ( ( ran 𝑆 ⊆ ℝ*𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) )
239 213 238 sylan ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) )
240 239 ralrimiva ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) )
241 brralrspcev ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧𝑥 )
242 226 240 241 syl2anc ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧𝑥 )
243 210 ffnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 Fn ℕ )
244 breq1 ( 𝑧 = ( 𝑆𝑘 ) → ( 𝑧𝑥 ↔ ( 𝑆𝑘 ) ≤ 𝑥 ) )
245 244 ralrn ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ 𝑥 ) )
246 243 245 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∀ 𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ 𝑥 ) )
247 246 rexbidv ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ 𝑥 ) )
248 242 247 mpbid ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ 𝑥 )
249 81 7 227 229 236 237 248 isumsup2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) )
250 7 249 eqbrtrrid ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) )
251 climrel Rel ⇝
252 251 releldmi ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ) ∈ dom ⇝ )
253 250 252 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹𝑛 ) ) ) ∈ dom ⇝ )
254 81 227 181 193 229 236 237 253 isumless ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) )
255 81 7 227 229 236 237 248 isumsup ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ , < ) )
256 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
257 211 256 sstrdi ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ )
258 1nn 1 ∈ ℕ
259 210 fdmd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 = ℕ )
260 258 259 eleqtrrid ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ dom 𝑆 )
261 260 ne0d ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 ≠ ∅ )
262 dm0rn0 ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ )
263 262 necon3bii ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ )
264 261 263 sylib ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ≠ ∅ )
265 supxrre ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧𝑥 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) )
266 257 264 242 265 syl3anc ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) )
267 255 266 eqtr4d ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ* , < ) )
268 254 267 breqtrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
269 204 226 207 268 224 letrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
270 103 204 207 269 fsumle ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
271 vex 𝑖 ∈ V
272 123 271 op1std ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( 1st𝑗 ) = 𝑛 )
273 272 fveq2d ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( 𝐹 ‘ ( 1st𝑗 ) ) = ( 𝐹𝑛 ) )
274 123 271 op2ndd ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( 2nd𝑗 ) = 𝑖 )
275 273 274 fveq12d ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) = ( ( 𝐹𝑛 ) ‘ 𝑖 ) )
276 275 fveq2d ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) )
277 275 fveq2d ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) )
278 276 277 oveq12d ( 𝑗 = ⟨ 𝑛 , 𝑖 ⟩ → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) )
279 202 recnd ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) ∈ ℂ )
280 278 103 181 279 fsum2d ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) )
281 170 sumeq1d ( 𝜑 → Σ 𝑗 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) )
282 280 281 eqtrd ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) )
283 105 recnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ )
284 114 recnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℂ )
285 103 283 284 fsumadd ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
286 270 282 285 3brtr3d ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
287 1zzd ( 𝜑 → 1 ∈ ℤ )
288 simpr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ )
289 2 fvmpt2 ( ( 𝑛 ∈ ℕ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐺𝑛 ) = ( vol* ‘ 𝐴 ) )
290 288 4 289 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) = ( vol* ‘ 𝐴 ) )
291 290 4 eqeltrd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐺𝑛 ) ∈ ℝ )
292 81 287 291 serfre ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ )
293 1 feq1i ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ )
294 292 293 sylibr ( 𝜑𝑇 : ℕ ⟶ ℝ )
295 294 frnd ( 𝜑 → ran 𝑇 ⊆ ℝ )
296 ressxr ℝ ⊆ ℝ*
297 295 296 sstrdi ( 𝜑 → ran 𝑇 ⊆ ℝ* )
298 104 290 sylan2 ( ( 𝜑𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐺𝑛 ) = ( vol* ‘ 𝐴 ) )
299 1red ( 𝜑 → 1 ∈ ℝ )
300 ffvelrn ( ( 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ∧ 1 ∈ ℕ ) → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) )
301 34 258 300 sylancl ( 𝜑 → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) )
302 xp1st ( ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ )
303 301 302 syl ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ )
304 303 nnred ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℝ )
305 15 zred ( 𝜑𝐿 ∈ ℝ )
306 303 nnge1d ( 𝜑 → 1 ≤ ( 1st ‘ ( 𝐽 ‘ 1 ) ) )
307 2fveq3 ( 𝑤 = 1 → ( 1st ‘ ( 𝐽𝑤 ) ) = ( 1st ‘ ( 𝐽 ‘ 1 ) ) )
308 307 breq1d ( 𝑤 = 1 → ( ( 1st ‘ ( 𝐽𝑤 ) ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) )
309 eluzfz1 ( 𝐾 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝐾 ) )
310 82 309 syl ( 𝜑 → 1 ∈ ( 1 ... 𝐾 ) )
311 308 16 310 rspcdva ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 )
312 299 304 305 306 311 letrd ( 𝜑 → 1 ≤ 𝐿 )
313 elnnz1 ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 1 ≤ 𝐿 ) )
314 15 312 313 sylanbrc ( 𝜑𝐿 ∈ ℕ )
315 314 81 eleqtrdi ( 𝜑𝐿 ∈ ( ℤ ‘ 1 ) )
316 298 315 283 fsumser ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) )
317 seqfn ( 1 ∈ ℤ → seq 1 ( + , 𝐺 ) Fn ( ℤ ‘ 1 ) )
318 287 317 syl ( 𝜑 → seq 1 ( + , 𝐺 ) Fn ( ℤ ‘ 1 ) )
319 fnfvelrn ( ( seq 1 ( + , 𝐺 ) Fn ( ℤ ‘ 1 ) ∧ 𝐿 ∈ ( ℤ ‘ 1 ) ) → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) )
320 318 315 319 syl2anc ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) )
321 1 rneqi ran 𝑇 = ran seq 1 ( + , 𝐺 )
322 320 321 eleqtrrdi ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran 𝑇 )
323 316 322 eqeltrd ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 )
324 supxrub ( ( ran 𝑇 ⊆ ℝ* ∧ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) )
325 297 323 324 syl2anc ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) )
326 107 recnd ( 𝜑𝐵 ∈ ℂ )
327 geo2sum ( ( 𝐿 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) )
328 314 326 327 syl2anc ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) )
329 314 nnnn0d ( 𝜑𝐿 ∈ ℕ0 )
330 nnexpcl ( ( 2 ∈ ℕ ∧ 𝐿 ∈ ℕ0 ) → ( 2 ↑ 𝐿 ) ∈ ℕ )
331 108 329 330 sylancr ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℕ )
332 331 nnrpd ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℝ+ )
333 6 332 rpdivcld ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ+ )
334 333 rpge0d ( 𝜑 → 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) )
335 107 331 nndivred ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ )
336 107 335 subge02d ( 𝜑 → ( 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ↔ ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) )
337 334 336 mpbid ( 𝜑 → ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 )
338 328 337 eqbrtrd ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ≤ 𝐵 )
339 106 115 5 107 325 338 le2addd ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )
340 102 116 117 286 339 letrd ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st𝑗 ) ) ‘ ( 2nd𝑗 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )
341 96 340 eqbrtrrd ( 𝜑 → ( 𝑈𝐾 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )