| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovoliun.t |
⊢ 𝑇 = seq 1 ( + , 𝐺 ) |
| 2 |
|
ovoliun.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) |
| 3 |
|
ovoliun.a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
| 4 |
|
ovoliun.v |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
ovoliun.r |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 6 |
|
ovoliun.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 7 |
|
ovoliun.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 8 |
|
ovoliun.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
| 9 |
|
ovoliun.h |
⊢ 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ) |
| 10 |
|
ovoliun.j |
⊢ ( 𝜑 → 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) |
| 11 |
|
ovoliun.f |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 12 |
|
ovoliun.x1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 13 |
|
ovoliun.x2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 14 |
|
ovoliun.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 15 |
|
ovoliun.l1 |
⊢ ( 𝜑 → 𝐿 ∈ ℤ ) |
| 16 |
|
ovoliun.l2 |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) |
| 17 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 2nd ‘ 𝑗 ) = ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) |
| 19 |
17 18
|
fveq12d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 21 |
19
|
fveq2d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 22 |
20 21
|
oveq12d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 23 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin ) |
| 24 |
|
f1of1 |
⊢ ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ) |
| 25 |
10 24
|
syl |
⊢ ( 𝜑 → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ) |
| 26 |
|
fz1ssnn |
⊢ ( 1 ... 𝐾 ) ⊆ ℕ |
| 27 |
|
f1ores |
⊢ ( ( 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 28 |
25 26 27
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 29 |
|
fvres |
⊢ ( 𝑚 ∈ ( 1 ... 𝐾 ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽 ‘ 𝑚 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽 ‘ 𝑚 ) ) |
| 31 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 32 |
|
imassrn |
⊢ ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran 𝐽 |
| 33 |
|
f1of |
⊢ ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ) |
| 34 |
10 33
|
syl |
⊢ ( 𝜑 → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ) |
| 35 |
34
|
frnd |
⊢ ( 𝜑 → ran 𝐽 ⊆ ( ℕ × ℕ ) ) |
| 36 |
32 35
|
sstrid |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) ) |
| 37 |
36
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝑗 ∈ ( ℕ × ℕ ) ) |
| 38 |
|
xp1st |
⊢ ( 𝑗 ∈ ( ℕ × ℕ ) → ( 1st ‘ 𝑗 ) ∈ ℕ ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ℕ ) |
| 40 |
31 39
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 41 |
|
elovolmlem |
⊢ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 42 |
40 41
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 43 |
|
xp2nd |
⊢ ( 𝑗 ∈ ( ℕ × ℕ ) → ( 2nd ‘ 𝑗 ) ∈ ℕ ) |
| 44 |
37 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ 𝑗 ) ∈ ℕ ) |
| 45 |
42 44
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 46 |
45
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) ) |
| 47 |
|
xp2nd |
⊢ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 48 |
46 47
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 49 |
|
xp1st |
⊢ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 50 |
46 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 51 |
48 50
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 52 |
51
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
| 53 |
22 23 28 30 52
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 54 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 55 |
34
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) ) |
| 56 |
|
xp1st |
⊢ ( ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
| 57 |
55 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
| 58 |
54 57
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 59 |
|
elovolmlem |
⊢ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 60 |
58 59
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 61 |
|
xp2nd |
⊢ ( ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
| 62 |
55 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
| 63 |
60 62
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 64 |
63 9
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 65 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝐾 ) → 𝑚 ∈ ℕ ) |
| 66 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) |
| 67 |
66
|
ovolfsval |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ) |
| 68 |
64 65 67
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ) |
| 69 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → 𝑚 ∈ ℕ ) |
| 70 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑚 → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) |
| 71 |
70
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 72 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑚 → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) |
| 73 |
71 72
|
fveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 74 |
|
fvex |
⊢ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ∈ V |
| 75 |
73 9 74
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝐻 ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 76 |
69 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 77 |
76
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 78 |
76
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 79 |
77 78
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 80 |
68 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 81 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 82 |
14 81
|
eleqtrdi |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
| 83 |
|
ffvelcdm |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 84 |
64 65 83
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 85 |
84
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) ) |
| 86 |
|
xp2nd |
⊢ ( ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
| 88 |
|
xp1st |
⊢ ( ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
| 89 |
85 88
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
| 90 |
87 89
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 91 |
90
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ∈ ℂ ) |
| 92 |
79 91
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ∈ ℂ ) |
| 93 |
80 82 92
|
fsumser |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) ) |
| 94 |
53 93
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) ) |
| 95 |
8
|
fveq1i |
⊢ ( 𝑈 ‘ 𝐾 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) |
| 96 |
94 95
|
eqtr4di |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( 𝑈 ‘ 𝐾 ) ) |
| 97 |
|
f1oeng |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 98 |
23 28 97
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 99 |
98
|
ensymd |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) |
| 100 |
|
enfii |
⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin ) |
| 101 |
23 99 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin ) |
| 102 |
101 51
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 103 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝐿 ) ∈ Fin ) |
| 104 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → 𝑛 ∈ ℕ ) |
| 105 |
104 4
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 106 |
103 105
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 107 |
6
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 108 |
|
2nn |
⊢ 2 ∈ ℕ |
| 109 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 110 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 111 |
108 109 110
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 112 |
104 111
|
syl |
⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 113 |
|
nndivre |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 114 |
107 112 113
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 115 |
103 114
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 116 |
106 115
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 117 |
5 107
|
readdcld |
⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ∈ ℝ ) |
| 118 |
|
relxp |
⊢ Rel ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
| 119 |
|
relres |
⊢ Rel ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) |
| 120 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑛 } → 𝑥 = 𝑛 ) |
| 121 |
120
|
opeq1d |
⊢ ( 𝑥 ∈ { 𝑛 } → 〈 𝑥 , 𝑦 〉 = 〈 𝑛 , 𝑦 〉 ) |
| 122 |
121
|
eleq1d |
⊢ ( 𝑥 ∈ { 𝑛 } → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 〈 𝑛 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
| 123 |
|
vex |
⊢ 𝑛 ∈ V |
| 124 |
|
vex |
⊢ 𝑦 ∈ V |
| 125 |
123 124
|
elimasn |
⊢ ( 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ↔ 〈 𝑛 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 126 |
122 125
|
bitr4di |
⊢ ( 𝑥 ∈ { 𝑛 } → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 127 |
126
|
pm5.32i |
⊢ ( ( 𝑥 ∈ { 𝑛 } ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 128 |
124
|
opelresi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
| 129 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 130 |
127 128 129
|
3bitr4ri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ) |
| 131 |
118 119 130
|
eqrelriiv |
⊢ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) |
| 132 |
|
df-res |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) |
| 133 |
131 132
|
eqtri |
⊢ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) |
| 134 |
133
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) ) |
| 135 |
134
|
iuneq2dv |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) ) |
| 136 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) |
| 137 |
135 136
|
eqtrdi |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) ) |
| 138 |
|
relxp |
⊢ Rel ( ℕ × ℕ ) |
| 139 |
|
relss |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ( Rel ( ℕ × ℕ ) → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
| 140 |
36 138 139
|
mpisyl |
⊢ ( 𝜑 → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 141 |
34
|
ffnd |
⊢ ( 𝜑 → 𝐽 Fn ℕ ) |
| 142 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑤 ) → ( 1st ‘ 𝑗 ) = ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ) |
| 143 |
142
|
breq1d |
⊢ ( 𝑗 = ( 𝐽 ‘ 𝑤 ) → ( ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
| 144 |
143
|
ralima |
⊢ ( ( 𝐽 Fn ℕ ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
| 145 |
141 26 144
|
sylancl |
⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
| 146 |
16 145
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ) |
| 147 |
146
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ≤ 𝐿 ) |
| 148 |
39 81
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 149 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐿 ∈ ℤ ) |
| 150 |
|
elfz5 |
⊢ ( ( ( 1st ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝐿 ∈ ℤ ) → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st ‘ 𝑗 ) ≤ 𝐿 ) ) |
| 151 |
148 149 150
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st ‘ 𝑗 ) ≤ 𝐿 ) ) |
| 152 |
147 151
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ) |
| 153 |
152
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ) |
| 154 |
|
vex |
⊢ 𝑥 ∈ V |
| 155 |
154 124
|
op1std |
⊢ ( 𝑗 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑗 ) = 𝑥 ) |
| 156 |
155
|
eleq1d |
⊢ ( 𝑗 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
| 157 |
156
|
rspccv |
⊢ ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
| 158 |
153 157
|
syl |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
| 159 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) ) |
| 160 |
124
|
biantru |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) ) |
| 161 |
|
iunid |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } = ( 1 ... 𝐿 ) |
| 162 |
161
|
eleq2i |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) |
| 163 |
159 160 162
|
3bitr2i |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) |
| 164 |
158 163
|
imbitrrdi |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) ) |
| 165 |
140 164
|
relssdv |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) |
| 166 |
|
xpiundir |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) = ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) |
| 167 |
165 166
|
sseqtrdi |
⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) |
| 168 |
|
dfss2 |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ↔ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 169 |
167 168
|
sylib |
⊢ ( 𝜑 → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 170 |
137 169
|
eqtrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 171 |
170 101
|
eqeltrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
| 172 |
|
ssiun2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 173 |
|
ssfi |
⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
| 174 |
171 172 173
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
| 175 |
|
2ndconst |
⊢ ( 𝑛 ∈ V → ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
| 176 |
175
|
elv |
⊢ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) |
| 177 |
|
f1oeng |
⊢ ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
| 178 |
174 176 177
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
| 179 |
178
|
ensymd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 180 |
|
enfii |
⊢ ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin ) |
| 181 |
174 179 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin ) |
| 182 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 183 |
11 104 182
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 184 |
|
elovolmlem |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 185 |
183 184
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 186 |
185
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 187 |
|
imassrn |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ran ( 𝐽 “ ( 1 ... 𝐾 ) ) |
| 188 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) ) |
| 189 |
|
rnss |
⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) ) |
| 190 |
188 189
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) ) |
| 191 |
|
rnxpid |
⊢ ran ( ℕ × ℕ ) = ℕ |
| 192 |
190 191
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ℕ ) |
| 193 |
187 192
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ℕ ) |
| 194 |
193
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) → 𝑖 ∈ ℕ ) ) |
| 195 |
194
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → 𝑖 ∈ ℕ ) |
| 196 |
186 195
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 197 |
196
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) ) |
| 198 |
|
xp2nd |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 199 |
197 198
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 200 |
|
xp1st |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 201 |
197 200
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 202 |
199 201
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 203 |
202
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 204 |
181 203
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 205 |
107 111 113
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 206 |
4 205
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 207 |
104 206
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 208 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) |
| 209 |
208 7
|
ovolsf |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 210 |
185 209
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 211 |
210
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 212 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 213 |
211 212
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ* ) |
| 214 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 215 |
213 214
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 216 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 217 |
216
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ ∈ ℝ* ) |
| 218 |
105
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 219 |
105
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < ( vol* ‘ 𝐴 ) ) |
| 220 |
104 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 221 |
7
|
ovollb |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 222 |
185 220 221
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 223 |
217 218 215 219 222
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
| 224 |
104 13
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 225 |
|
xrre |
⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 226 |
215 207 223 224 225
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 227 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ ℤ ) |
| 228 |
208
|
ovolfsval |
⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 229 |
185 228
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 230 |
208
|
ovolfsf |
⊢ ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 231 |
185 230
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 232 |
231
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) ∈ ( 0 [,) +∞ ) ) |
| 233 |
229 232
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 234 |
|
elrege0 |
⊢ ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) ) |
| 235 |
233 234
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) ) |
| 236 |
235
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 237 |
235
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 238 |
|
supxrub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 239 |
213 238
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 240 |
239
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 241 |
|
brralrspcev |
⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
| 242 |
226 240 241
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
| 243 |
210
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 Fn ℕ ) |
| 244 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 245 |
244
|
ralrn |
⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 246 |
243 245
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 247 |
246
|
rexbidv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 248 |
242 247
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) |
| 249 |
81 7 227 229 236 237 248
|
isumsup2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 250 |
7 249
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 251 |
|
climrel |
⊢ Rel ⇝ |
| 252 |
251
|
releldmi |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 253 |
250 252
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 254 |
81 227 181 193 229 236 237 253
|
isumless |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 255 |
81 7 227 229 236 237 248
|
isumsup |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 256 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 257 |
211 256
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ ) |
| 258 |
|
1nn |
⊢ 1 ∈ ℕ |
| 259 |
210
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 = ℕ ) |
| 260 |
258 259
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ dom 𝑆 ) |
| 261 |
260
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 ≠ ∅ ) |
| 262 |
|
dm0rn0 |
⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) |
| 263 |
262
|
necon3bii |
⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 264 |
261 263
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ≠ ∅ ) |
| 265 |
|
supxrre |
⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 266 |
257 264 242 265
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 267 |
255 266
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 268 |
254 267
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 269 |
204 226 207 268 224
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 270 |
103 204 207 269
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 271 |
|
vex |
⊢ 𝑖 ∈ V |
| 272 |
123 271
|
op1std |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 1st ‘ 𝑗 ) = 𝑛 ) |
| 273 |
272
|
fveq2d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
| 274 |
123 271
|
op2ndd |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 2nd ‘ 𝑗 ) = 𝑖 ) |
| 275 |
273 274
|
fveq12d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) |
| 276 |
275
|
fveq2d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
| 277 |
275
|
fveq2d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
| 278 |
276 277
|
oveq12d |
⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 279 |
202
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℂ ) |
| 280 |
278 103 181 279
|
fsum2d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
| 281 |
170
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
| 282 |
280 281
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
| 283 |
105
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 284 |
114
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
| 285 |
103 283 284
|
fsumadd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 286 |
270 282 285
|
3brtr3d |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 287 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 288 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 289 |
2
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
| 290 |
288 4 289
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
| 291 |
290 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 292 |
81 287 291
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 293 |
1
|
feq1i |
⊢ ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 294 |
292 293
|
sylibr |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
| 295 |
294
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 296 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 297 |
295 296
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 298 |
104 290
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
| 299 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 300 |
|
ffvelcdm |
⊢ ( ( 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ∧ 1 ∈ ℕ ) → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) ) |
| 301 |
34 258 300
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) ) |
| 302 |
|
xp1st |
⊢ ( ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ ) |
| 303 |
301 302
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ ) |
| 304 |
303
|
nnred |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℝ ) |
| 305 |
15
|
zred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 306 |
303
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ) |
| 307 |
|
2fveq3 |
⊢ ( 𝑤 = 1 → ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) = ( 1st ‘ ( 𝐽 ‘ 1 ) ) ) |
| 308 |
307
|
breq1d |
⊢ ( 𝑤 = 1 → ( ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) ) |
| 309 |
|
eluzfz1 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝐾 ) ) |
| 310 |
82 309
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝐾 ) ) |
| 311 |
308 16 310
|
rspcdva |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) |
| 312 |
299 304 305 306 311
|
letrd |
⊢ ( 𝜑 → 1 ≤ 𝐿 ) |
| 313 |
|
elnnz1 |
⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 1 ≤ 𝐿 ) ) |
| 314 |
15 312 313
|
sylanbrc |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 315 |
314 81
|
eleqtrdi |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) |
| 316 |
298 315 283
|
fsumser |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ) |
| 317 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
| 318 |
287 317
|
syl |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
| 319 |
|
fnfvelrn |
⊢ ( ( seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) ) |
| 320 |
318 315 319
|
syl2anc |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) ) |
| 321 |
1
|
rneqi |
⊢ ran 𝑇 = ran seq 1 ( + , 𝐺 ) |
| 322 |
320 321
|
eleqtrrdi |
⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran 𝑇 ) |
| 323 |
316 322
|
eqeltrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) |
| 324 |
|
supxrub |
⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 325 |
297 323 324
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 326 |
107
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 327 |
|
geo2sum |
⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ) |
| 328 |
314 326 327
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ) |
| 329 |
314
|
nnnn0d |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 330 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐿 ∈ ℕ0 ) → ( 2 ↑ 𝐿 ) ∈ ℕ ) |
| 331 |
108 329 330
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℕ ) |
| 332 |
331
|
nnrpd |
⊢ ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℝ+ ) |
| 333 |
6 332
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ+ ) |
| 334 |
333
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) |
| 335 |
107 331
|
nndivred |
⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ ) |
| 336 |
107 335
|
subge02d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ↔ ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) ) |
| 337 |
334 336
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) |
| 338 |
328 337
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ≤ 𝐵 ) |
| 339 |
106 115 5 107 325 338
|
le2addd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 340 |
102 116 117 286 339
|
letrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 341 |
96 340
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐾 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |