| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovoliun.t |
⊢ 𝑇 = seq 1 ( + , 𝐺 ) |
| 2 |
|
ovoliun.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) |
| 3 |
|
ovoliun.a |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) |
| 4 |
|
ovoliun.v |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
|
ovoliun.r |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 6 |
|
ovoliun.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐴 |
| 8 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 9 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 10 |
7 8 9
|
cbviun |
⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 11 |
10
|
fveq2i |
⊢ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 12 |
|
2nn |
⊢ 2 ∈ ℕ |
| 13 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 14 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 16 |
15
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 17 |
|
rpdivcl |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ ( 2 ↑ 𝑛 ) ∈ ℝ+ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 18 |
6 16 17
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 19 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 20 |
19
|
ovolgelb |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 21 |
3 4 18 20
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 23 |
|
ovex |
⊢ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∈ V |
| 24 |
|
nnenom |
⊢ ℕ ≈ ω |
| 25 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( (,) ∘ 𝑓 ) = ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 26 |
25
|
rneqd |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ran ( (,) ∘ 𝑓 ) = ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 27 |
26
|
unieqd |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ∪ ran ( (,) ∘ 𝑓 ) = ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 28 |
27
|
sseq2d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ↔ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 29 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 30 |
29
|
seqeq3d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 31 |
30
|
rneqd |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) ) |
| 32 |
31
|
supeq1d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ) |
| 33 |
32
|
breq1d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 34 |
28 33
|
anbi12d |
⊢ ( 𝑓 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 35 |
23 24 34
|
axcc4 |
⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 36 |
22 35
|
syl |
⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 37 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
| 38 |
37
|
ensymi |
⊢ ℕ ≈ ( ℕ × ℕ ) |
| 39 |
|
bren |
⊢ ( ℕ ≈ ( ℕ × ℕ ) ↔ ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) |
| 40 |
38 39
|
mpbi |
⊢ ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) |
| 41 |
|
nfcv |
⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) |
| 42 |
|
nfcv |
⊢ Ⅎ 𝑛 vol* |
| 43 |
42 8
|
nffv |
⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 44 |
9
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( vol* ‘ 𝐴 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 45 |
41 43 44
|
cbvmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 46 |
2 45
|
eqtri |
⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 47 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) |
| 48 |
|
nfv |
⊢ Ⅎ 𝑚 𝐴 ⊆ ℝ |
| 49 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
| 50 |
8 49
|
nfss |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ |
| 51 |
9
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) ) |
| 52 |
48 50 51
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 53 |
47 52
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 54 |
53
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 55 |
54
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 56 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 57 |
41
|
nfel1 |
⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) ∈ ℝ |
| 58 |
43
|
nfel1 |
⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ |
| 59 |
44
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) ) |
| 60 |
57 58 59
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 61 |
56 60
|
sylib |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 62 |
61
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 63 |
62
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 64 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 65 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝐵 ∈ ℝ+ ) |
| 66 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 67 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) ) ) |
| 68 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗 ‘ 𝑘 ) ) ) ) |
| 69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) |
| 70 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 71 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 72 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 73 |
|
nfcv |
⊢ Ⅎ 𝑛 ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) |
| 74 |
8 73
|
nfss |
⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) |
| 75 |
|
nfcv |
⊢ Ⅎ 𝑛 sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) |
| 76 |
|
nfcv |
⊢ Ⅎ 𝑛 ≤ |
| 77 |
|
nfcv |
⊢ Ⅎ 𝑛 + |
| 78 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝐵 / ( 2 ↑ 𝑚 ) ) |
| 79 |
43 77 78
|
nfov |
⊢ Ⅎ 𝑛 ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) |
| 80 |
75 76 79
|
nfbr |
⊢ Ⅎ 𝑛 sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) |
| 81 |
74 80
|
nfan |
⊢ Ⅎ 𝑛 ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) |
| 82 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) |
| 83 |
82
|
coeq2d |
⊢ ( 𝑛 = 𝑚 → ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) = ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 84 |
83
|
rneqd |
⊢ ( 𝑛 = 𝑚 → ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) = ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 85 |
84
|
unieqd |
⊢ ( 𝑛 = 𝑚 → ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) = ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 86 |
9 85
|
sseq12d |
⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 87 |
82
|
coeq2d |
⊢ ( 𝑛 = 𝑚 → ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 88 |
87
|
seqeq3d |
⊢ ( 𝑛 = 𝑚 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 89 |
88
|
rneqd |
⊢ ( 𝑛 = 𝑚 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) = ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 90 |
89
|
supeq1d |
⊢ ( 𝑛 = 𝑚 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ) |
| 91 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) |
| 93 |
44 92
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) |
| 94 |
90 93
|
breq12d |
⊢ ( 𝑛 = 𝑚 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 95 |
86 94
|
anbi12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) ) |
| 96 |
72 81 95
|
cbvralw |
⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ∀ 𝑚 ∈ ℕ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 97 |
71 96
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∀ 𝑚 ∈ ℕ ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 98 |
97
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ( ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) |
| 99 |
98
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑚 ) ) ) |
| 100 |
98
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) |
| 101 |
1 46 55 63 64 65 66 67 68 69 70 99 100
|
ovoliunlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 102 |
101
|
exp31 |
⊢ ( 𝜑 → ( 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) ) |
| 103 |
102
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) ) |
| 104 |
40 103
|
mpi |
⊢ ( 𝜑 → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) |
| 105 |
104
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝑔 ‘ 𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔 ‘ 𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) |
| 106 |
36 105
|
mpd |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 107 |
11 106
|
eqbrtrid |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |