Step |
Hyp |
Ref |
Expression |
1 |
|
iuneq1 |
⊢ ( 𝐴 = ∅ → ∪ 𝑛 ∈ 𝐴 𝐵 = ∪ 𝑛 ∈ ∅ 𝐵 ) |
2 |
|
0iun |
⊢ ∪ 𝑛 ∈ ∅ 𝐵 = ∅ |
3 |
1 2
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∪ 𝑛 ∈ 𝐴 𝐵 = ∅ ) |
4 |
3
|
fveq2d |
⊢ ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = ( vol* ‘ ∅ ) ) |
5 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |
7 |
6
|
a1i |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝐴 = ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
8 |
|
reldom |
⊢ Rel ≼ |
9 |
8
|
brrelex1i |
⊢ ( 𝐴 ≼ ℕ → 𝐴 ∈ V ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → 𝐴 ∈ V ) |
11 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
13 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) |
14 |
13
|
expcom |
⊢ ( 𝐴 ≼ ℕ → ( ∅ ≺ 𝐴 → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 → ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 ) ) |
16 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝐴 𝐵 ↔ ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
17 |
|
nfv |
⊢ Ⅎ 𝑛 𝑓 : ℕ –onto→ 𝐴 |
18 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
19 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
20 |
18 19
|
nfiun |
⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
21 |
20
|
nfcri |
⊢ Ⅎ 𝑛 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
22 |
|
foelrn |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) |
23 |
22
|
ex |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑛 ∈ 𝐴 → ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) ) |
24 |
|
csbeq1a |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
25 |
24
|
adantl |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
26 |
25
|
eleq2d |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
27 |
26
|
biimpd |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑛 = ( 𝑓 ‘ 𝑘 ) ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
28 |
27
|
impancom |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
29 |
28
|
reximdv |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
30 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
31 |
29 30
|
syl6ibr |
⊢ ( ( 𝑓 : ℕ –onto→ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
32 |
31
|
ex |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑥 ∈ 𝐵 → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
33 |
32
|
com23 |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∃ 𝑘 ∈ ℕ 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
34 |
23 33
|
syld |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑛 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
35 |
17 21 34
|
rexlimd |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
36 |
16 35
|
syl5bi |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝐴 𝐵 → 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
37 |
36
|
ssrdv |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → ∪ 𝑛 ∈ 𝐴 𝐵 ⊆ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∪ 𝑛 ∈ 𝐴 𝐵 ⊆ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
39 |
|
fof |
⊢ ( 𝑓 : ℕ –onto→ 𝐴 → 𝑓 : ℕ ⟶ 𝐴 ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 𝑓 : ℕ ⟶ 𝐴 ) |
41 |
40
|
ffvelrnda |
⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 ) |
42 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) |
43 |
|
nfcv |
⊢ Ⅎ 𝑛 ℝ |
44 |
19 43
|
nfss |
⊢ Ⅎ 𝑛 ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ |
45 |
|
nfcv |
⊢ Ⅎ 𝑛 vol* |
46 |
45 19
|
nffv |
⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
47 |
46
|
nfeq1 |
⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 |
48 |
44 47
|
nfan |
⊢ Ⅎ 𝑛 ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
49 |
24
|
sseq1d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( 𝐵 ⊆ ℝ ↔ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) ) |
50 |
24
|
fveqeq2d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( ( vol* ‘ 𝐵 ) = 0 ↔ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) |
51 |
49 50
|
anbi12d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ↔ ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) ) |
52 |
48 51
|
rspc |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝐴 → ( ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) ) |
53 |
41 42 52
|
sylc |
⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) ) |
54 |
53
|
simpld |
⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
55 |
54
|
ralrimiva |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∀ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
56 |
|
iunss |
⊢ ( ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ↔ ∀ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
57 |
55 56
|
sylibr |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ) |
58 |
|
eqid |
⊢ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
59 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) = ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
60 |
53
|
simprd |
⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
61 |
|
0re |
⊢ 0 ∈ ℝ |
62 |
60 61
|
eqeltrdi |
⊢ ( ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ ) |
63 |
60
|
mpteq2dva |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) = ( 𝑘 ∈ ℕ ↦ 0 ) ) |
64 |
|
fconstmpt |
⊢ ( ℕ × { 0 } ) = ( 𝑘 ∈ ℕ ↦ 0 ) |
65 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
66 |
65
|
xpeq1i |
⊢ ( ℕ × { 0 } ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
67 |
64 66
|
eqtr3i |
⊢ ( 𝑘 ∈ ℕ ↦ 0 ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
68 |
63 67
|
eqtrdi |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) |
69 |
68
|
seqeq3d |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) = seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) |
70 |
|
1z |
⊢ 1 ∈ ℤ |
71 |
|
serclim0 |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) |
72 |
|
seqex |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ∈ V |
73 |
|
c0ex |
⊢ 0 ∈ V |
74 |
72 73
|
breldm |
⊢ ( seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ∈ dom ⇝ ) |
75 |
70 71 74
|
mp2b |
⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ∈ dom ⇝ |
76 |
69 75
|
eqeltrdi |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) ∈ dom ⇝ ) |
77 |
58 59 54 62 76
|
ovoliun2 |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ Σ 𝑘 ∈ ℕ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
78 |
60
|
sumeq2dv |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → Σ 𝑘 ∈ ℕ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = Σ 𝑘 ∈ ℕ 0 ) |
79 |
65
|
eqimssi |
⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
80 |
79
|
orci |
⊢ ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) |
81 |
|
sumz |
⊢ ( ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑘 ∈ ℕ 0 = 0 ) |
82 |
80 81
|
ax-mp |
⊢ Σ 𝑘 ∈ ℕ 0 = 0 |
83 |
78 82
|
eqtrdi |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → Σ 𝑘 ∈ ℕ ( vol* ‘ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
84 |
77 83
|
breqtrd |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ 0 ) |
85 |
|
ovolge0 |
⊢ ( ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
86 |
57 85
|
syl |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
87 |
|
ovolcl |
⊢ ( ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ* ) |
88 |
57 87
|
syl |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ* ) |
89 |
|
0xr |
⊢ 0 ∈ ℝ* |
90 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ↔ ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) ) |
91 |
88 89 90
|
sylancl |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ↔ ( ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) ) |
92 |
84 86 91
|
mpbir2and |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) |
93 |
|
ovolssnul |
⊢ ( ( ∪ 𝑛 ∈ 𝐴 𝐵 ⊆ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∧ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑘 ∈ ℕ ⦋ ( 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) = 0 ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |
94 |
38 57 92 93
|
syl3anc |
⊢ ( ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) ∧ 𝑓 : ℕ –onto→ 𝐴 ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |
95 |
94
|
ex |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝑓 : ℕ –onto→ 𝐴 → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
96 |
95
|
exlimdv |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∃ 𝑓 𝑓 : ℕ –onto→ 𝐴 → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
97 |
15 96
|
syld |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( ∅ ≺ 𝐴 → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
98 |
12 97
|
sylbird |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( 𝐴 ≠ ∅ → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) ) |
99 |
7 98
|
pm2.61dne |
⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ) → ( vol* ‘ ∪ 𝑛 ∈ 𝐴 𝐵 ) = 0 ) |