Step |
Hyp |
Ref |
Expression |
1 |
|
ovollb2.1 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
2 |
|
simpr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
3 |
|
ovolficcss |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
4 |
3
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ∪ ran ( [,] ∘ 𝐹 ) ⊆ ℝ ) |
5 |
2 4
|
sstrd |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 𝐴 ⊆ ℝ ) |
6 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
7 |
5 6
|
syl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
9 |
|
pnfge |
⊢ ( ( vol* ‘ 𝐴 ) ∈ ℝ* → ( vol* ‘ 𝐴 ) ≤ +∞ ) |
10 |
8 9
|
syl |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → ( vol* ‘ 𝐴 ) ≤ +∞ ) |
11 |
|
simpr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → sup ( ran 𝑆 , ℝ* , < ) = +∞ ) |
12 |
10 11
|
breqtrrd |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) = +∞ ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
13 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
14 |
13 1
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
16 |
15
|
frnd |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
17 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
18 |
16 17
|
sstrdi |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ran 𝑆 ⊆ ℝ ) |
19 |
|
1nn |
⊢ 1 ∈ ℕ |
20 |
15
|
fdmd |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → dom 𝑆 = ℕ ) |
21 |
19 20
|
eleqtrrid |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → 1 ∈ dom 𝑆 ) |
22 |
21
|
ne0d |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → dom 𝑆 ≠ ∅ ) |
23 |
|
dm0rn0 |
⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) |
24 |
23
|
necon3bii |
⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
25 |
22 24
|
sylib |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ran 𝑆 ≠ ∅ ) |
26 |
|
supxrre2 |
⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ) → ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ↔ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) ) |
27 |
18 25 26
|
syl2anc |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ↔ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) ) |
28 |
27
|
biimpar |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
29 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) = ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) |
32 |
29 31
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) ) |
33 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
34 |
33 31
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) ) |
35 |
32 34
|
opeq12d |
⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 = 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) 〉 ) |
36 |
35
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑛 ) ) ) 〉 ) |
37 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) − ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) , ( ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) + ( ( 𝑥 / 2 ) / ( 2 ↑ 𝑚 ) ) ) 〉 ) ) ) |
38 |
|
simplll |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
39 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) |
40 |
|
simpr |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
41 |
|
simplr |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
42 |
1 36 37 38 39 40 41
|
ovollb2lem |
⊢ ( ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) |
43 |
42
|
ralrimiva |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ∀ 𝑥 ∈ ℝ+ ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) |
44 |
|
xralrple |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) ) |
45 |
7 44
|
sylan |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ 𝐴 ) ≤ ( sup ( ran 𝑆 , ℝ* , < ) + 𝑥 ) ) ) |
46 |
43 45
|
mpbird |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
47 |
28 46
|
syldan |
⊢ ( ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≠ +∞ ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
48 |
12 47
|
pm2.61dane |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( [,] ∘ 𝐹 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |