| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 4 |
|
ovolge0 |
⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ≤ 𝐵 ) |
| 7 |
|
xrrege0 |
⊢ ( ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ ( vol* ‘ 𝐴 ) ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 8 |
2 3 5 6 7
|
syl22anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ 𝐵 ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |