Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
⊢ ℝ ⊆ ℝ |
2 |
|
ovolcl |
⊢ ( ℝ ⊆ ℝ → ( vol* ‘ ℝ ) ∈ ℝ* ) |
3 |
1 2
|
ax-mp |
⊢ ( vol* ‘ ℝ ) ∈ ℝ* |
4 |
|
pnfge |
⊢ ( ( vol* ‘ ℝ ) ∈ ℝ* → ( vol* ‘ ℝ ) ≤ +∞ ) |
5 |
3 4
|
ax-mp |
⊢ ( vol* ‘ ℝ ) ≤ +∞ |
6 |
|
0re |
⊢ 0 ∈ ℝ |
7 |
|
ovolicopnf |
⊢ ( 0 ∈ ℝ → ( vol* ‘ ( 0 [,) +∞ ) ) = +∞ ) |
8 |
6 7
|
ax-mp |
⊢ ( vol* ‘ ( 0 [,) +∞ ) ) = +∞ |
9 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
10 |
|
ovolss |
⊢ ( ( ( 0 [,) +∞ ) ⊆ ℝ ∧ ℝ ⊆ ℝ ) → ( vol* ‘ ( 0 [,) +∞ ) ) ≤ ( vol* ‘ ℝ ) ) |
11 |
9 1 10
|
mp2an |
⊢ ( vol* ‘ ( 0 [,) +∞ ) ) ≤ ( vol* ‘ ℝ ) |
12 |
8 11
|
eqbrtrri |
⊢ +∞ ≤ ( vol* ‘ ℝ ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ ℝ ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ ℝ ) = +∞ ↔ ( ( vol* ‘ ℝ ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ℝ ) ) ) ) |
15 |
3 13 14
|
mp2an |
⊢ ( ( vol* ‘ ℝ ) = +∞ ↔ ( ( vol* ‘ ℝ ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ℝ ) ) ) |
16 |
5 12 15
|
mpbir2an |
⊢ ( vol* ‘ ℝ ) = +∞ |