| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 2 |
|
ovolcl |
⊢ ( ℝ ⊆ ℝ → ( vol* ‘ ℝ ) ∈ ℝ* ) |
| 3 |
1 2
|
ax-mp |
⊢ ( vol* ‘ ℝ ) ∈ ℝ* |
| 4 |
|
pnfge |
⊢ ( ( vol* ‘ ℝ ) ∈ ℝ* → ( vol* ‘ ℝ ) ≤ +∞ ) |
| 5 |
3 4
|
ax-mp |
⊢ ( vol* ‘ ℝ ) ≤ +∞ |
| 6 |
|
0re |
⊢ 0 ∈ ℝ |
| 7 |
|
ovolicopnf |
⊢ ( 0 ∈ ℝ → ( vol* ‘ ( 0 [,) +∞ ) ) = +∞ ) |
| 8 |
6 7
|
ax-mp |
⊢ ( vol* ‘ ( 0 [,) +∞ ) ) = +∞ |
| 9 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 10 |
|
ovolss |
⊢ ( ( ( 0 [,) +∞ ) ⊆ ℝ ∧ ℝ ⊆ ℝ ) → ( vol* ‘ ( 0 [,) +∞ ) ) ≤ ( vol* ‘ ℝ ) ) |
| 11 |
9 1 10
|
mp2an |
⊢ ( vol* ‘ ( 0 [,) +∞ ) ) ≤ ( vol* ‘ ℝ ) |
| 12 |
8 11
|
eqbrtrri |
⊢ +∞ ≤ ( vol* ‘ ℝ ) |
| 13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 14 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ ℝ ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ ℝ ) = +∞ ↔ ( ( vol* ‘ ℝ ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ℝ ) ) ) ) |
| 15 |
3 13 14
|
mp2an |
⊢ ( ( vol* ‘ ℝ ) = +∞ ↔ ( ( vol* ‘ ℝ ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ℝ ) ) ) |
| 16 |
5 12 15
|
mpbir2an |
⊢ ( vol* ‘ ℝ ) = +∞ |