Step |
Hyp |
Ref |
Expression |
1 |
|
ovolsca.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ovolsca.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
3 |
|
ovolsca.3 |
⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
4 |
|
ovolsca.4 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
5 |
1 2 3 4
|
ovolscalem2 |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |
6 |
4
|
recnd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
7 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
8 |
2
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
9 |
6 7 8
|
divrecd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) = ( ( vol* ‘ 𝐴 ) · ( 1 / 𝐶 ) ) ) |
10 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ⊆ ℝ |
11 |
3 10
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
12 |
2
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℝ+ ) |
13 |
1 2 3
|
sca2rab |
⊢ ( 𝜑 → 𝐴 = { 𝑦 ∈ ℝ ∣ ( ( 1 / 𝐶 ) · 𝑦 ) ∈ 𝐵 } ) |
14 |
4 2
|
rerpdivcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ) |
15 |
|
ovollecl |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
16 |
11 14 5 15
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
17 |
11 12 13 16
|
ovolscalem2 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ≤ ( ( vol* ‘ 𝐵 ) / ( 1 / 𝐶 ) ) ) |
18 |
4 16 12
|
lemuldivd |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) · ( 1 / 𝐶 ) ) ≤ ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ 𝐴 ) ≤ ( ( vol* ‘ 𝐵 ) / ( 1 / 𝐶 ) ) ) ) |
19 |
17 18
|
mpbird |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) · ( 1 / 𝐶 ) ) ≤ ( vol* ‘ 𝐵 ) ) |
20 |
9 19
|
eqbrtrd |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ≤ ( vol* ‘ 𝐵 ) ) |
21 |
16 14
|
letri3d |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐵 ) = ( ( vol* ‘ 𝐴 ) / 𝐶 ) ↔ ( ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∧ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ≤ ( vol* ‘ 𝐵 ) ) ) ) |
22 |
5 20 21
|
mpbir2and |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |