Metamath Proof Explorer


Theorem ovolscalem1

Description: Lemma for ovolsca . (Contributed by Mario Carneiro, 6-Apr-2015)

Ref Expression
Hypotheses ovolsca.1 ( 𝜑𝐴 ⊆ ℝ )
ovolsca.2 ( 𝜑𝐶 ∈ ℝ+ )
ovolsca.3 ( 𝜑𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } )
ovolsca.4 ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ )
ovolsca.5 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
ovolsca.6 𝐺 = ( 𝑛 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ )
ovolsca.7 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
ovolsca.8 ( 𝜑𝐴 ran ( (,) ∘ 𝐹 ) )
ovolsca.9 ( 𝜑𝑅 ∈ ℝ+ )
ovolsca.10 ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
Assertion ovolscalem1 ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )

Proof

Step Hyp Ref Expression
1 ovolsca.1 ( 𝜑𝐴 ⊆ ℝ )
2 ovolsca.2 ( 𝜑𝐶 ∈ ℝ+ )
3 ovolsca.3 ( 𝜑𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } )
4 ovolsca.4 ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ )
5 ovolsca.5 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
6 ovolsca.6 𝐺 = ( 𝑛 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ )
7 ovolsca.7 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
8 ovolsca.8 ( 𝜑𝐴 ran ( (,) ∘ 𝐹 ) )
9 ovolsca.9 ( 𝜑𝑅 ∈ ℝ+ )
10 ovolsca.10 ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
11 ssrab2 { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ⊆ ℝ
12 3 11 eqsstrdi ( 𝜑𝐵 ⊆ ℝ )
13 ovolcl ( 𝐵 ⊆ ℝ → ( vol* ‘ 𝐵 ) ∈ ℝ* )
14 12 13 syl ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ* )
15 ovolfcl ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹𝑛 ) ) ) )
16 7 15 sylan ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹𝑛 ) ) ) )
17 16 simp3d ( ( 𝜑𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹𝑛 ) ) )
18 16 simp1d ( ( 𝜑𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
19 16 simp2d ( ( 𝜑𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
20 2 rpregt0d ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
21 20 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
22 lediv1 ( ( ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹𝑛 ) ) ↔ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ≤ ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
23 18 19 21 22 syl3anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) ≤ ( 2nd ‘ ( 𝐹𝑛 ) ) ↔ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ≤ ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
24 17 23 mpbid ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ≤ ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) )
25 df-br ( ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ≤ ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ↔ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ∈ ≤ )
26 24 25 sylib ( ( 𝜑𝑛 ∈ ℕ ) → ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ∈ ≤ )
27 2 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝐶 ∈ ℝ+ )
28 18 27 rerpdivcld ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ∈ ℝ )
29 19 27 rerpdivcld ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ∈ ℝ )
30 28 29 opelxpd ( ( 𝜑𝑛 ∈ ℕ ) → ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ∈ ( ℝ × ℝ ) )
31 26 30 elind ( ( 𝜑𝑛 ∈ ℕ ) → ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
32 31 6 fmptd ( 𝜑𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
33 eqid ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 )
34 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) )
35 33 34 ovolsf ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
36 32 35 syl ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) : ℕ ⟶ ( 0 [,) +∞ ) )
37 36 frnd ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ( 0 [,) +∞ ) )
38 icossxr ( 0 [,) +∞ ) ⊆ ℝ*
39 37 38 sstrdi ( 𝜑 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* )
40 supxrcl ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* )
41 39 40 syl ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ∈ ℝ* )
42 4 2 rerpdivcld ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ )
43 9 rpred ( 𝜑𝑅 ∈ ℝ )
44 42 43 readdcld ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ∈ ℝ )
45 44 rexrd ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ∈ ℝ* )
46 3 eleq2d ( 𝜑 → ( 𝑦𝐵𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) )
47 oveq2 ( 𝑥 = 𝑦 → ( 𝐶 · 𝑥 ) = ( 𝐶 · 𝑦 ) )
48 47 eleq1d ( 𝑥 = 𝑦 → ( ( 𝐶 · 𝑥 ) ∈ 𝐴 ↔ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) )
49 48 elrab ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) )
50 46 49 bitrdi ( 𝜑 → ( 𝑦𝐵 ↔ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) )
51 breq2 ( 𝑥 = ( 𝐶 · 𝑦 ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥 ↔ ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ) )
52 breq1 ( 𝑥 = ( 𝐶 · 𝑦 ) → ( 𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ↔ ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ) )
53 51 52 anbi12d ( 𝑥 = ( 𝐶 · 𝑦 ) → ( ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ↔ ( ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ∧ ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ) )
54 53 rexbidv ( 𝑥 = ( 𝐶 · 𝑦 ) → ( ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ∧ ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ) )
55 ovolfioo ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑥𝐴𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ) )
56 1 7 55 syl2anc ( 𝜑 → ( 𝐴 ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑥𝐴𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ) )
57 8 56 mpbid ( 𝜑 → ∀ 𝑥𝐴𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ) )
58 57 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) → ∀ 𝑥𝐴𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < 𝑥𝑥 < ( 2nd ‘ ( 𝐹𝑛 ) ) ) )
59 simprr ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) → ( 𝐶 · 𝑦 ) ∈ 𝐴 )
60 54 58 59 rspcdva ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ∧ ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ) )
61 opex ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ∈ V
62 6 fvmpt2 ( ( 𝑛 ∈ ℕ ∧ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ∈ V ) → ( 𝐺𝑛 ) = ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ )
63 61 62 mpan2 ( 𝑛 ∈ ℕ → ( 𝐺𝑛 ) = ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ )
64 63 fveq2d ( 𝑛 ∈ ℕ → ( 1st ‘ ( 𝐺𝑛 ) ) = ( 1st ‘ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ) )
65 ovex ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ∈ V
66 ovex ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ∈ V
67 65 66 op1st ( 1st ‘ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ) = ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 )
68 64 67 eqtrdi ( 𝑛 ∈ ℕ → ( 1st ‘ ( 𝐺𝑛 ) ) = ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) )
69 68 adantl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐺𝑛 ) ) = ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) )
70 69 breq1d ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦 ↔ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) < 𝑦 ) )
71 18 adantlr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
72 simplrl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑦 ∈ ℝ )
73 21 adantlr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
74 ltdivmul ( ( ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) < 𝑦 ↔ ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ) )
75 71 72 73 74 syl3anc ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) < 𝑦 ↔ ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ) )
76 70 75 bitr2d ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ↔ ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦 ) )
77 19 adantlr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℝ )
78 ltmuldiv2 ( ( 𝑦 ∈ ℝ ∧ ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ↔ 𝑦 < ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
79 72 77 73 78 syl3anc ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ↔ 𝑦 < ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
80 63 fveq2d ( 𝑛 ∈ ℕ → ( 2nd ‘ ( 𝐺𝑛 ) ) = ( 2nd ‘ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ) )
81 65 66 op2nd ( 2nd ‘ ⟨ ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ⟩ ) = ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 )
82 80 81 eqtrdi ( 𝑛 ∈ ℕ → ( 2nd ‘ ( 𝐺𝑛 ) ) = ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) )
83 82 adantl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐺𝑛 ) ) = ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) )
84 83 breq2d ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ↔ 𝑦 < ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
85 79 84 bitr4d ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ↔ 𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) )
86 76 85 anbi12d ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ∧ ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ↔ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) ) )
87 86 rexbidva ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐹𝑛 ) ) < ( 𝐶 · 𝑦 ) ∧ ( 𝐶 · 𝑦 ) < ( 2nd ‘ ( 𝐹𝑛 ) ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) ) )
88 60 87 mpbid ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) )
89 88 ex ( 𝜑 → ( ( 𝑦 ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ 𝐴 ) → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) ) )
90 50 89 sylbid ( 𝜑 → ( 𝑦𝐵 → ∃ 𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) ) )
91 90 ralrimiv ( 𝜑 → ∀ 𝑦𝐵𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) )
92 ovolfioo ( ( 𝐵 ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐵 ran ( (,) ∘ 𝐺 ) ↔ ∀ 𝑦𝐵𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) ) )
93 12 32 92 syl2anc ( 𝜑 → ( 𝐵 ran ( (,) ∘ 𝐺 ) ↔ ∀ 𝑦𝐵𝑛 ∈ ℕ ( ( 1st ‘ ( 𝐺𝑛 ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐺𝑛 ) ) ) ) )
94 91 93 mpbird ( 𝜑𝐵 ran ( (,) ∘ 𝐺 ) )
95 34 ovollb ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐵 ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ 𝐵 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) )
96 32 94 95 syl2anc ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) )
97 fzfid ( ( 𝜑𝑘 ∈ ℕ ) → ( 1 ... 𝑘 ) ∈ Fin )
98 2 rpcnd ( 𝜑𝐶 ∈ ℂ )
99 98 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ )
100 simpl ( ( 𝜑𝑘 ∈ ℕ ) → 𝜑 )
101 elfznn ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ )
102 19 18 resubcld ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ∈ ℝ )
103 100 101 102 syl2an ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ∈ ℝ )
104 103 recnd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ∈ ℂ )
105 2 rpne0d ( 𝜑𝐶 ≠ 0 )
106 105 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐶 ≠ 0 )
107 97 99 104 106 fsumdivc ( ( 𝜑𝑘 ∈ ℕ ) → ( Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) = Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) )
108 82 68 oveq12d ( 𝑛 ∈ ℕ → ( ( 2nd ‘ ( 𝐺𝑛 ) ) − ( 1st ‘ ( 𝐺𝑛 ) ) ) = ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) − ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
109 108 adantl ( ( 𝜑𝑛 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺𝑛 ) ) − ( 1st ‘ ( 𝐺𝑛 ) ) ) = ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) − ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
110 33 ovolfsval ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐺𝑛 ) ) − ( 1st ‘ ( 𝐺𝑛 ) ) ) )
111 32 110 sylan ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐺𝑛 ) ) − ( 1st ‘ ( 𝐺𝑛 ) ) ) )
112 19 recnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℂ )
113 18 recnd ( ( 𝜑𝑛 ∈ ℕ ) → ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℂ )
114 2 rpcnne0d ( 𝜑 → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) )
115 114 adantr ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) )
116 divsubdir ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) ∈ ℂ ∧ ( 1st ‘ ( 𝐹𝑛 ) ) ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) = ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) − ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
117 112 113 115 116 syl3anc ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) = ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) / 𝐶 ) − ( ( 1st ‘ ( 𝐹𝑛 ) ) / 𝐶 ) ) )
118 109 111 117 3eqtr4d ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) )
119 100 101 118 syl2an ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 𝑛 ) = ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) )
120 simpr ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ )
121 nnuz ℕ = ( ℤ ‘ 1 )
122 120 121 eleqtrdi ( ( 𝜑𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ ‘ 1 ) )
123 102 27 rerpdivcld ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) ∈ ℝ )
124 123 recnd ( ( 𝜑𝑛 ∈ ℕ ) → ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) ∈ ℂ )
125 100 101 124 syl2an ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) ∈ ℂ )
126 119 122 125 fsumser ( ( 𝜑𝑘 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) )
127 107 126 eqtrd ( ( 𝜑𝑘 ∈ ℕ ) → ( Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) )
128 eqid ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 )
129 128 5 ovolsf ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) )
130 7 129 syl ( 𝜑𝑆 : ℕ ⟶ ( 0 [,) +∞ ) )
131 130 frnd ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) )
132 131 38 sstrdi ( 𝜑 → ran 𝑆 ⊆ ℝ* )
133 2 9 rpmulcld ( 𝜑 → ( 𝐶 · 𝑅 ) ∈ ℝ+ )
134 133 rpred ( 𝜑 → ( 𝐶 · 𝑅 ) ∈ ℝ )
135 4 134 readdcld ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ∈ ℝ )
136 135 rexrd ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ∈ ℝ* )
137 supxrleub ( ( ran 𝑆 ⊆ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ↔ ∀ 𝑥 ∈ ran 𝑆 𝑥 ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ) )
138 132 136 137 syl2anc ( 𝜑 → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ↔ ∀ 𝑥 ∈ ran 𝑆 𝑥 ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ) )
139 10 138 mpbid ( 𝜑 → ∀ 𝑥 ∈ ran 𝑆 𝑥 ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
140 130 ffnd ( 𝜑𝑆 Fn ℕ )
141 breq1 ( 𝑥 = ( 𝑆𝑘 ) → ( 𝑥 ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ↔ ( 𝑆𝑘 ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ) )
142 141 ralrn ( 𝑆 Fn ℕ → ( ∀ 𝑥 ∈ ran 𝑆 𝑥 ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ) )
143 140 142 syl ( 𝜑 → ( ∀ 𝑥 ∈ ran 𝑆 𝑥 ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) ) )
144 139 143 mpbid ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆𝑘 ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
145 144 r19.21bi ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝑆𝑘 ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
146 7 adantr ( ( 𝜑𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
147 128 ovolfsval ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) )
148 146 101 147 syl2an ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) )
149 148 122 104 fsumser ( ( 𝜑𝑘 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) )
150 5 fveq1i ( 𝑆𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 )
151 149 150 eqtr4di ( ( 𝜑𝑘 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) = ( 𝑆𝑘 ) )
152 42 recnd ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℂ )
153 9 rpcnd ( 𝜑𝑅 ∈ ℂ )
154 98 152 153 adddid ( 𝜑 → ( 𝐶 · ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) = ( ( 𝐶 · ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) + ( 𝐶 · 𝑅 ) ) )
155 4 recnd ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℂ )
156 155 98 105 divcan2d ( 𝜑 → ( 𝐶 · ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) = ( vol* ‘ 𝐴 ) )
157 156 oveq1d ( 𝜑 → ( ( 𝐶 · ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) + ( 𝐶 · 𝑅 ) ) = ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
158 154 157 eqtrd ( 𝜑 → ( 𝐶 · ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) = ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
159 158 adantr ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐶 · ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) = ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑅 ) ) )
160 145 151 159 3brtr4d ( ( 𝜑𝑘 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ≤ ( 𝐶 · ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) )
161 97 103 fsumrecl ( ( 𝜑𝑘 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ∈ ℝ )
162 44 adantr ( ( 𝜑𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ∈ ℝ )
163 20 adantr ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) )
164 ledivmul ( ( Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ∈ ℝ ∧ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ≤ ( 𝐶 · ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) ) )
165 161 162 163 164 syl3anc ( ( 𝜑𝑘 ∈ ℕ ) → ( ( Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) ≤ ( 𝐶 · ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) ) )
166 160 165 mpbird ( ( 𝜑𝑘 ∈ ℕ ) → ( Σ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 2nd ‘ ( 𝐹𝑛 ) ) − ( 1st ‘ ( 𝐹𝑛 ) ) ) / 𝐶 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )
167 127 166 eqbrtrrd ( ( 𝜑𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )
168 167 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )
169 36 ffnd ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ )
170 breq1 ( 𝑦 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) → ( 𝑦 ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) )
171 170 ralrn ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) Fn ℕ → ( ∀ 𝑦 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑦 ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) )
172 169 171 syl ( 𝜑 → ( ∀ 𝑦 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑦 ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ ∀ 𝑘 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) )
173 168 172 mpbird ( 𝜑 → ∀ 𝑦 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑦 ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )
174 supxrleub ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ⊆ ℝ* ∧ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ∈ ℝ* ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ ∀ 𝑦 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑦 ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) )
175 39 45 174 syl2anc ( 𝜑 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ↔ ∀ 𝑦 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) 𝑦 ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) ) )
176 173 175 mpbird ( 𝜑 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )
177 14 41 45 96 176 xrletrd ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑅 ) )