Step |
Hyp |
Ref |
Expression |
1 |
|
ovolsca.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ovolsca.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
3 |
|
ovolsca.3 |
⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
4 |
|
ovolsca.4 |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ⊆ ℝ ) |
6 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
7 |
|
rpmulcl |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝐶 · 𝑦 ) ∈ ℝ+ ) |
8 |
2 7
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝐶 · 𝑦 ) ∈ ℝ+ ) |
9 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
10 |
9
|
ovolgelb |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐶 · 𝑦 ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) |
11 |
5 6 8 10
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) |
12 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐴 ⊆ ℝ ) |
13 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐶 ∈ ℝ+ ) |
14 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ) |
15 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
16 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) = ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) ) |
18 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) = ( ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) ) |
20 |
17 19
|
opeq12d |
⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) 〉 = 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) 〉 ) |
21 |
20
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑚 ) ) / 𝐶 ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) , ( ( 2nd ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝐶 ) 〉 ) |
22 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
23 |
22
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
24 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → 𝑦 ∈ ℝ+ ) |
26 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) |
27 |
12 13 14 15 9 21 23 24 25 26
|
ovolscalem1 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 · 𝑦 ) ) ) ) ) → ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) |
28 |
11 27
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) |
29 |
28
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) |
30 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ ( 𝐶 · 𝑥 ) ∈ 𝐴 } ⊆ ℝ |
31 |
3 30
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
32 |
|
ovolcl |
⊢ ( 𝐵 ⊆ ℝ → ( vol* ‘ 𝐵 ) ∈ ℝ* ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ* ) |
34 |
4 2
|
rerpdivcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ) |
35 |
|
xralrple |
⊢ ( ( ( vol* ‘ 𝐵 ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ∈ ℝ ) → ( ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ↔ ∀ 𝑦 ∈ ℝ+ ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ↔ ∀ 𝑦 ∈ ℝ+ ( vol* ‘ 𝐵 ) ≤ ( ( ( vol* ‘ 𝐴 ) / 𝐶 ) + 𝑦 ) ) ) |
37 |
29 36
|
mpbird |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ≤ ( ( vol* ‘ 𝐴 ) / 𝐶 ) ) |