Step |
Hyp |
Ref |
Expression |
1 |
|
ovolfs.1 |
⊢ 𝐺 = ( ( abs ∘ − ) ∘ 𝐹 ) |
2 |
|
ovolfs.2 |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
3 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
4 |
|
1zzd |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 1 ∈ ℤ ) |
5 |
1
|
ovolfsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝐺 : ℕ ⟶ ( 0 [,) +∞ ) ) |
6 |
5
|
ffvelrnda |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
7 |
|
ge0addcl |
⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
9 |
3 4 6 8
|
seqf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
10 |
2
|
feq1i |
⊢ ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
11 |
9 10
|
sylibr |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |