Step |
Hyp |
Ref |
Expression |
1 |
|
ovolshft.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ovolshft.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
ovolshft.3 |
⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) |
4 |
|
ovolshft.4 |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
5 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐴 ⊆ ℝ ) |
6 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐶 ∈ ℝ ) |
7 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) |
8 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
9 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) = ( ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) ) |
11 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) = ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) ) |
13 |
10 12
|
opeq12d |
⊢ ( 𝑚 = 𝑛 → 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) 〉 = 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) 〉 ) |
14 |
13
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑚 ) ) + 𝐶 ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( ( 1st ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) + 𝐶 ) 〉 ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
16 |
|
elovolmlem |
⊢ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
17 |
15 16
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
18 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) |
19 |
5 6 7 4 8 14 17 18
|
ovolshftlem1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ 𝑀 ) |
20 |
|
eleq1a |
⊢ ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ 𝑀 → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) → 𝑧 ∈ 𝑀 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) → 𝑧 ∈ 𝑀 ) ) |
22 |
21
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
23 |
22
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℝ* ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
25 |
|
rabss |
⊢ ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 ↔ ∀ 𝑧 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧 ∈ 𝑀 ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 ) |