Description: A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolsn | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snfi | ⊢ { 𝐴 } ∈ Fin | |
| 2 | snssi | ⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ⊆ ℝ ) | |
| 3 | ovolfi | ⊢ ( ( { 𝐴 } ∈ Fin ∧ { 𝐴 } ⊆ ℝ ) → ( vol* ‘ { 𝐴 } ) = 0 ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) |