Metamath Proof Explorer


Theorem ovolsn

Description: A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014)

Ref Expression
Assertion ovolsn ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 )

Proof

Step Hyp Ref Expression
1 snfi { 𝐴 } ∈ Fin
2 snssi ( 𝐴 ∈ ℝ → { 𝐴 } ⊆ ℝ )
3 ovolfi ( ( { 𝐴 } ∈ Fin ∧ { 𝐴 } ⊆ ℝ ) → ( vol* ‘ { 𝐴 } ) = 0 )
4 1 2 3 sylancr ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 )