Description: A singleton has 0 outer Lebesgue measure. (Contributed by Mario Carneiro, 15-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ovolsn | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi | ⊢ { 𝐴 } ∈ Fin | |
2 | snssi | ⊢ ( 𝐴 ∈ ℝ → { 𝐴 } ⊆ ℝ ) | |
3 | ovolfi | ⊢ ( ( { 𝐴 } ∈ Fin ∧ { 𝐴 } ⊆ ℝ ) → ( vol* ‘ { 𝐴 } ) = 0 ) | |
4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) |