Step |
Hyp |
Ref |
Expression |
1 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
4 |
|
ovolss |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
6 |
|
ovollecl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ∧ ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
7 |
2 3 5 6
|
syl3anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |