Step |
Hyp |
Ref |
Expression |
1 |
|
ovolss.1 |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
2 |
|
ovolss.2 |
⊢ 𝑁 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
3 |
|
sstr2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
5 |
4
|
anim1d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
6 |
5
|
reximdv |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) ∧ 𝑦 ∈ ℝ* ) → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
7 |
6
|
ss2rabdv |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ) |
8 |
7 2 1
|
3sstr4g |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝑁 ⊆ 𝑀 ) |
9 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
10 |
1
|
ovolval |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀 ) → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
12 |
1
|
ssrab3 |
⊢ 𝑀 ⊆ ℝ* |
13 |
|
infxrlb |
⊢ ( ( 𝑀 ⊆ ℝ* ∧ 𝑥 ∈ 𝑀 ) → inf ( 𝑀 , ℝ* , < ) ≤ 𝑥 ) |
14 |
12 13
|
mpan |
⊢ ( 𝑥 ∈ 𝑀 → inf ( 𝑀 , ℝ* , < ) ≤ 𝑥 ) |
15 |
14
|
adantl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀 ) → inf ( 𝑀 , ℝ* , < ) ≤ 𝑥 ) |
16 |
11 15
|
eqbrtrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝑀 ) → ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
17 |
16
|
ralrimiva |
⊢ ( 𝐴 ⊆ ℝ → ∀ 𝑥 ∈ 𝑀 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
18 |
9 17
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝑀 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
19 |
|
ssralv |
⊢ ( 𝑁 ⊆ 𝑀 → ( ∀ 𝑥 ∈ 𝑀 ( vol* ‘ 𝐴 ) ≤ 𝑥 → ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) ) |
20 |
8 18 19
|
sylc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) |
21 |
2
|
ssrab3 |
⊢ 𝑁 ⊆ ℝ* |
22 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
23 |
9 22
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
24 |
|
infxrgelb |
⊢ ( ( 𝑁 ⊆ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) ≤ inf ( 𝑁 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) ) |
25 |
21 23 24
|
sylancr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( ( vol* ‘ 𝐴 ) ≤ inf ( 𝑁 , ℝ* , < ) ↔ ∀ 𝑥 ∈ 𝑁 ( vol* ‘ 𝐴 ) ≤ 𝑥 ) ) |
26 |
20 25
|
mpbird |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ inf ( 𝑁 , ℝ* , < ) ) |
27 |
2
|
ovolval |
⊢ ( 𝐵 ⊆ ℝ → ( vol* ‘ 𝐵 ) = inf ( 𝑁 , ℝ* , < ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐵 ) = inf ( 𝑁 , ℝ* , < ) ) |
29 |
26 28
|
breqtrrd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |