Step |
Hyp |
Ref |
Expression |
1 |
|
ovolss |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
3 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐵 ) = 0 ) |
4 |
2 3
|
breqtrd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ≤ 0 ) |
5 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 𝐴 ⊆ ℝ ) |
7 |
|
ovolge0 |
⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
9 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
10 |
6 9
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
11 |
|
0xr |
⊢ 0 ∈ ℝ* |
12 |
|
xrletri3 |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) |
13 |
10 11 12
|
sylancl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( vol* ‘ 𝐴 ) = 0 ↔ ( ( vol* ‘ 𝐴 ) ≤ 0 ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) ) ) |
14 |
4 8 13
|
mpbir2and |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) = 0 ) |