Step |
Hyp |
Ref |
Expression |
1 |
|
ovolun.a |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
2 |
|
ovolun.b |
⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
3 |
|
ovolun.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
ovolun.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
5 |
|
ovolun.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
6 |
|
ovolun.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
7 |
|
ovolun.f1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
8 |
|
ovolun.f2 |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
9 |
|
ovolun.f3 |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
10 |
|
ovolun.g1 |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
11 |
|
ovolun.g2 |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
12 |
|
ovolun.g3 |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
13 |
|
ovolun.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) |
14 |
1
|
simpld |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
15 |
2
|
simpld |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
16 |
14 15
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
17 |
|
elovolmlem |
⊢ ( 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
18 |
10 17
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
20 |
19
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
21 |
|
nneo |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) |
23 |
22
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ↔ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ) |
24 |
23
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) |
25 |
|
elovolmlem |
⊢ ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
26 |
7 25
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
28 |
27
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
29 |
24 28
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
30 |
20 29
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
31 |
30 13
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
32 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) |
33 |
32 6
|
ovolsf |
⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
34 |
31 33
|
syl |
⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
35 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
36 |
|
fss |
⊢ ( ( 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝑈 : ℕ ⟶ ℝ ) |
37 |
34 35 36
|
sylancl |
⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ℝ ) |
38 |
37
|
frnd |
⊢ ( 𝜑 → ran 𝑈 ⊆ ℝ ) |
39 |
|
1nn |
⊢ 1 ∈ ℕ |
40 |
|
1z |
⊢ 1 ∈ ℤ |
41 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
42 |
40 41
|
mp1i |
⊢ ( 𝜑 → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
43 |
6
|
fneq1i |
⊢ ( 𝑈 Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ℕ ) |
44 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
45 |
44
|
fneq2i |
⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
46 |
43 45
|
bitri |
⊢ ( 𝑈 Fn ℕ ↔ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) Fn ( ℤ≥ ‘ 1 ) ) |
47 |
42 46
|
sylibr |
⊢ ( 𝜑 → 𝑈 Fn ℕ ) |
48 |
47
|
fndmd |
⊢ ( 𝜑 → dom 𝑈 = ℕ ) |
49 |
39 48
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑈 ) |
50 |
49
|
ne0d |
⊢ ( 𝜑 → dom 𝑈 ≠ ∅ ) |
51 |
|
dm0rn0 |
⊢ ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ ) |
52 |
51
|
necon3bii |
⊢ ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) |
53 |
50 52
|
sylib |
⊢ ( 𝜑 → ran 𝑈 ≠ ∅ ) |
54 |
1
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
55 |
2
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
56 |
54 55
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
57 |
3
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
58 |
56 57
|
readdcld |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
ovolunlem1a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
60 |
59
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
61 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑈 ‘ 𝑘 ) → ( 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
62 |
61
|
ralrn |
⊢ ( 𝑈 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
63 |
47 62
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
64 |
60 63
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
65 |
|
brralrspcev |
⊢ ( ( ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) → ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ) |
66 |
58 64 65
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ) |
67 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
68 |
38 67
|
sstrdi |
⊢ ( 𝜑 → ran 𝑈 ⊆ ℝ* ) |
69 |
|
supxrbnd2 |
⊢ ( ran 𝑈 ⊆ ℝ* → ( ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup ( ran 𝑈 , ℝ* , < ) < +∞ ) ) |
70 |
68 69
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ 𝑘 ↔ sup ( ran 𝑈 , ℝ* , < ) < +∞ ) ) |
71 |
66 70
|
mpbid |
⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) < +∞ ) |
72 |
|
supxrbnd |
⊢ ( ( ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ sup ( ran 𝑈 , ℝ* , < ) < +∞ ) → sup ( ran 𝑈 , ℝ* , < ) ∈ ℝ ) |
73 |
38 53 71 72
|
syl3anc |
⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) ∈ ℝ ) |
74 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
75 |
74
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
76 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℂ ) |
77 |
75
|
2timesd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) = ( 𝑚 + 𝑚 ) ) |
78 |
77
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) − 1 ) = ( ( 𝑚 + 𝑚 ) − 1 ) ) |
79 |
75 75 76 78
|
assraddsubd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) − 1 ) = ( 𝑚 + ( 𝑚 − 1 ) ) ) |
80 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
81 |
|
nnm1nn0 |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℕ0 ) |
82 |
|
nnnn0addcl |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( 𝑚 − 1 ) ∈ ℕ0 ) → ( 𝑚 + ( 𝑚 − 1 ) ) ∈ ℕ ) |
83 |
80 81 82
|
syl2anc2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + ( 𝑚 − 1 ) ) ∈ ℕ ) |
84 |
79 83
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ ) |
85 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) |
86 |
85
|
eleq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ) ) |
87 |
85
|
fveq2d |
⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) ) |
88 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝑛 + 1 ) = ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) ) |
89 |
88
|
fvoveq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) |
90 |
86 87 89
|
ifbieq12d |
⊢ ( 𝑛 = ( ( 2 · 𝑚 ) − 1 ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ) |
91 |
|
fvex |
⊢ ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) ∈ V |
92 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ∈ V |
93 |
91 92
|
ifex |
⊢ if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ∈ V |
94 |
90 13 93
|
fvmpt |
⊢ ( ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ → ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ) |
95 |
84 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) ) |
96 |
|
2nn |
⊢ 2 ∈ ℕ |
97 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) ∈ ℕ ) |
98 |
96 80 97
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) ∈ ℕ ) |
99 |
98
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2 · 𝑚 ) ∈ ℂ ) |
100 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
101 |
|
npcan |
⊢ ( ( ( 2 · 𝑚 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) = ( 2 · 𝑚 ) ) |
102 |
99 100 101
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) = ( 2 · 𝑚 ) ) |
103 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) = ( ( 2 · 𝑚 ) / 2 ) ) |
104 |
|
2cn |
⊢ 2 ∈ ℂ |
105 |
|
2ne0 |
⊢ 2 ≠ 0 |
106 |
|
divcan3 |
⊢ ( ( 𝑚 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) |
107 |
104 105 106
|
mp3an23 |
⊢ ( 𝑚 ∈ ℂ → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) |
108 |
75 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) / 2 ) = 𝑚 ) |
109 |
103 108
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) = 𝑚 ) |
110 |
109 80
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ) |
111 |
|
nneo |
⊢ ( ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ → ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ) ) |
112 |
84 111
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ) ) |
113 |
112
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ) ) |
114 |
110 113
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ¬ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ ) |
115 |
114
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → if ( ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑚 ) − 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) ) |
116 |
109
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ ( ( ( ( 2 · 𝑚 ) − 1 ) + 1 ) / 2 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
117 |
95 115 116
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = ( 𝐹 ‘ 𝑚 ) ) |
118 |
|
fveqeq2 |
⊢ ( 𝑘 = ( ( 2 · 𝑚 ) − 1 ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ↔ ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = ( 𝐹 ‘ 𝑚 ) ) ) |
119 |
118
|
rspcev |
⊢ ( ( ( ( 2 · 𝑚 ) − 1 ) ∈ ℕ ∧ ( 𝐻 ‘ ( ( 2 · 𝑚 ) − 1 ) ) = ( 𝐹 ‘ 𝑚 ) ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
120 |
84 117 119
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
121 |
|
fveq2 |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
122 |
121
|
breq1d |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ↔ ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
123 |
|
fveq2 |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
124 |
123
|
breq2d |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ↔ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
125 |
122 124
|
anbi12d |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
126 |
125
|
biimprcd |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
127 |
126
|
reximdv |
⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
128 |
120 127
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
129 |
128
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
130 |
129
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
131 |
|
ovolfioo |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
132 |
14 26 131
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
133 |
|
ovolfioo |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
134 |
14 31 133
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
135 |
130 132 134
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) ) |
136 |
8 135
|
mpd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) |
137 |
|
oveq1 |
⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝑛 / 2 ) = ( ( 2 · 𝑚 ) / 2 ) ) |
138 |
137
|
eleq1d |
⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ ) ) |
139 |
137
|
fveq2d |
⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) ) |
140 |
|
oveq1 |
⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝑛 + 1 ) = ( ( 2 · 𝑚 ) + 1 ) ) |
141 |
140
|
fvoveq1d |
⊢ ( 𝑛 = ( 2 · 𝑚 ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) |
142 |
138 139 141
|
ifbieq12d |
⊢ ( 𝑛 = ( 2 · 𝑚 ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ) |
143 |
|
fvex |
⊢ ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) ∈ V |
144 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ∈ V |
145 |
143 144
|
ifex |
⊢ if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ∈ V |
146 |
142 13 145
|
fvmpt |
⊢ ( ( 2 · 𝑚 ) ∈ ℕ → ( 𝐻 ‘ ( 2 · 𝑚 ) ) = if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ) |
147 |
98 146
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · 𝑚 ) ) = if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) ) |
148 |
108 80
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ ) |
149 |
148
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → if ( ( ( 2 · 𝑚 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · 𝑚 ) + 1 ) / 2 ) ) ) = ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) ) |
150 |
108
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ ( ( 2 · 𝑚 ) / 2 ) ) = ( 𝐺 ‘ 𝑚 ) ) |
151 |
147 149 150
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · 𝑚 ) ) = ( 𝐺 ‘ 𝑚 ) ) |
152 |
|
fveqeq2 |
⊢ ( 𝑘 = ( 2 · 𝑚 ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ↔ ( 𝐻 ‘ ( 2 · 𝑚 ) ) = ( 𝐺 ‘ 𝑚 ) ) ) |
153 |
152
|
rspcev |
⊢ ( ( ( 2 · 𝑚 ) ∈ ℕ ∧ ( 𝐻 ‘ ( 2 · 𝑚 ) ) = ( 𝐺 ‘ 𝑚 ) ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) |
154 |
98 151 153
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) |
155 |
|
fveq2 |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
156 |
155
|
breq1d |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ↔ ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ) ) |
157 |
|
fveq2 |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) |
158 |
157
|
breq2d |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ↔ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) |
159 |
156 158
|
anbi12d |
⊢ ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ↔ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ) |
160 |
159
|
biimprcd |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
161 |
160
|
reximdv |
⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝐻 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
162 |
154 161
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
163 |
162
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
164 |
163
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
165 |
|
ovolfioo |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ) |
166 |
15 18 165
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑚 ∈ ℕ ( ( 1st ‘ ( 𝐺 ‘ 𝑚 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐺 ‘ 𝑚 ) ) ) ) ) |
167 |
|
ovolfioo |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
168 |
15 31 167
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ↔ ∀ 𝑧 ∈ 𝐵 ∃ 𝑘 ∈ ℕ ( ( 1st ‘ ( 𝐻 ‘ 𝑘 ) ) < 𝑧 ∧ 𝑧 < ( 2nd ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
169 |
164 166 168
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) ) |
170 |
11 169
|
mpd |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) |
171 |
136 170
|
unssd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) |
172 |
6
|
ovollb |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝐻 ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
173 |
31 171 172
|
syl2anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) |
174 |
|
ovollecl |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ∧ sup ( ran 𝑈 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ sup ( ran 𝑈 , ℝ* , < ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) |
175 |
16 73 173 174
|
syl3anc |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) |
176 |
58
|
rexrd |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ* ) |
177 |
|
supxrleub |
⊢ ( ( ran 𝑈 ⊆ ℝ* ∧ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ* ) → ( sup ( ran 𝑈 , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
178 |
68 176 177
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran 𝑈 , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ↔ ∀ 𝑧 ∈ ran 𝑈 𝑧 ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
179 |
64 178
|
mpbird |
⊢ ( 𝜑 → sup ( ran 𝑈 , ℝ* , < ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
180 |
175 73 58 173 179
|
letrd |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |