Step |
Hyp |
Ref |
Expression |
1 |
|
ovolun.a |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
2 |
|
ovolun.b |
⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
3 |
|
ovolun.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
ovolun.s |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
5 |
|
ovolun.t |
⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) |
6 |
|
ovolun.u |
⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) |
7 |
|
ovolun.f1 |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
8 |
|
ovolun.f2 |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
9 |
|
ovolun.f3 |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
10 |
|
ovolun.g1 |
⊢ ( 𝜑 → 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
11 |
|
ovolun.g2 |
⊢ ( 𝜑 → 𝐵 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) |
12 |
|
ovolun.g3 |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
13 |
|
ovolun.h |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) |
14 |
|
elovolmlem |
⊢ ( 𝐺 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
15 |
10 14
|
sylib |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
17 |
16
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
18 |
|
nneo |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ¬ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) ) |
20 |
19
|
con2bid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ↔ ¬ ( 𝑛 / 2 ) ∈ ℕ ) ) |
21 |
20
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) |
22 |
|
elovolmlem |
⊢ ( 𝐹 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
23 |
7 22
|
sylib |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
25 |
24
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( ( 𝑛 + 1 ) / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
26 |
21 25
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( 𝑛 / 2 ) ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
27 |
17 26
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
28 |
27 13
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
29 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) |
30 |
29 6
|
ovolsf |
⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
31 |
28 30
|
syl |
⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ) |
32 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
33 |
|
fss |
⊢ ( ( 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝑈 : ℕ ⟶ ℝ ) |
34 |
31 32 33
|
sylancl |
⊢ ( 𝜑 → 𝑈 : ℕ ⟶ ℝ ) |
35 |
34
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ∈ ℝ ) |
36 |
|
2nn |
⊢ 2 ∈ ℕ |
37 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
39 |
38
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℝ ) |
40 |
39
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) / 2 ) ∈ ℝ ) |
41 |
40
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℤ ) |
42 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
43 |
42
|
2timesi |
⊢ ( 2 · 1 ) = ( 1 + 1 ) |
44 |
|
nnge1 |
⊢ ( 𝑘 ∈ ℕ → 1 ≤ 𝑘 ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ≤ 𝑘 ) |
46 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
48 |
|
1re |
⊢ 1 ∈ ℝ |
49 |
|
leadd1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) ) |
50 |
48 48 49
|
mp3an13 |
⊢ ( 𝑘 ∈ ℝ → ( 1 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) ) |
51 |
47 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ 𝑘 ↔ ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) ) |
52 |
45 51
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 + 1 ) ≤ ( 𝑘 + 1 ) ) |
53 |
43 52
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ) |
54 |
|
2re |
⊢ 2 ∈ ℝ |
55 |
|
2pos |
⊢ 0 < 2 |
56 |
54 55
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
57 |
|
lemuldiv2 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ↔ 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) ) |
58 |
48 56 57
|
mp3an13 |
⊢ ( ( 𝑘 + 1 ) ∈ ℝ → ( ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ↔ 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) ) |
59 |
39 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 1 ) ≤ ( 𝑘 + 1 ) ↔ 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) ) |
60 |
53 59
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ) |
61 |
|
1z |
⊢ 1 ∈ ℤ |
62 |
|
flge |
⊢ ( ( ( ( 𝑘 + 1 ) / 2 ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
63 |
40 61 62
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1 ≤ ( ( 𝑘 + 1 ) / 2 ) ↔ 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
64 |
60 63
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) |
65 |
|
elnnz1 |
⊢ ( ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ↔ ( ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℤ ∧ 1 ≤ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
66 |
41 64 65
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) |
67 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) |
68 |
36 66 67
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) |
69 |
34
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ∈ ℝ ) |
70 |
68 69
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ∈ ℝ ) |
71 |
1
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
72 |
2
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
73 |
71 72
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
74 |
3
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
75 |
73 74
|
readdcld |
⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ) |
76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ∈ ℝ ) |
77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
78 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
79 |
77 78
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
80 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
81 |
80
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
82 |
|
flhalf |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
84 |
|
nnz |
⊢ ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℤ ) |
85 |
|
eluz |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℤ ) → ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
86 |
80 84 85
|
syl2an |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℕ ) → ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
87 |
77 68 86
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ↔ 𝑘 ≤ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
88 |
83 87
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
89 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) → 𝑗 ∈ ℕ ) |
90 |
29
|
ovolfsf |
⊢ ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
91 |
28 90
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( abs ∘ − ) ∘ 𝐻 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
93 |
92
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
94 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) ) |
95 |
93 94
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) ) |
96 |
95
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ) |
97 |
89 96
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( 1 ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ∈ ℝ ) |
98 |
|
elfzuz |
⊢ ( 𝑗 ∈ ( ( 𝑘 + 1 ) ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
99 |
|
eluznn |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) → 𝑗 ∈ ℕ ) |
100 |
38 98 99
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑘 + 1 ) ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) → 𝑗 ∈ ℕ ) |
101 |
95
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) |
102 |
100 101
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑗 ∈ ( ( 𝑘 + 1 ) ... ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑗 ) ) |
103 |
79 88 97 102
|
sermono |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑘 ) ≤ ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
104 |
6
|
fveq1i |
⊢ ( 𝑈 ‘ 𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝑘 ) |
105 |
6
|
fveq1i |
⊢ ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
106 |
103 104 105
|
3brtr4g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
107 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
108 |
107 4
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
109 |
23 108
|
syl |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
110 |
109
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
111 |
110 32
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran 𝑆 ⊆ ℝ ) |
113 |
109
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
114 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn ℕ ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑆 ) |
115 |
113 66 114
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑆 ) |
116 |
112 115
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℝ ) |
117 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐺 ) = ( ( abs ∘ − ) ∘ 𝐺 ) |
118 |
117 5
|
ovolsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
119 |
15 118
|
syl |
⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ( 0 [,) +∞ ) ) |
120 |
119
|
frnd |
⊢ ( 𝜑 → ran 𝑇 ⊆ ( 0 [,) +∞ ) ) |
121 |
120 32
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ran 𝑇 ⊆ ℝ ) |
123 |
119
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
124 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn ℕ ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑇 ) |
125 |
123 66 124
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑇 ) |
126 |
122 125
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ℝ ) |
127 |
74
|
rehalfcld |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ ) |
128 |
71 127
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
129 |
128
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
130 |
72 127
|
readdcld |
⊢ ( 𝜑 → ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) |
132 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
133 |
111 132
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
134 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
135 |
133 134
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
136 |
|
1nn |
⊢ 1 ∈ ℕ |
137 |
109
|
fdmd |
⊢ ( 𝜑 → dom 𝑆 = ℕ ) |
138 |
136 137
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑆 ) |
139 |
138
|
ne0d |
⊢ ( 𝜑 → dom 𝑆 ≠ ∅ ) |
140 |
|
dm0rn0 |
⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) |
141 |
140
|
necon3bii |
⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
142 |
139 141
|
sylib |
⊢ ( 𝜑 → ran 𝑆 ≠ ∅ ) |
143 |
|
supxrgtmnf |
⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ) → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
144 |
111 142 143
|
syl2anc |
⊢ ( 𝜑 → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
145 |
|
xrre |
⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
146 |
135 128 144 9 145
|
syl22anc |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
148 |
|
supxrub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑆 ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
149 |
133 115 148
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
150 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
151 |
116 147 129 149 150
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
152 |
121 132
|
sstrdi |
⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
153 |
|
supxrcl |
⊢ ( ran 𝑇 ⊆ ℝ* → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
154 |
152 153
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
155 |
119
|
fdmd |
⊢ ( 𝜑 → dom 𝑇 = ℕ ) |
156 |
136 155
|
eleqtrrid |
⊢ ( 𝜑 → 1 ∈ dom 𝑇 ) |
157 |
156
|
ne0d |
⊢ ( 𝜑 → dom 𝑇 ≠ ∅ ) |
158 |
|
dm0rn0 |
⊢ ( dom 𝑇 = ∅ ↔ ran 𝑇 = ∅ ) |
159 |
158
|
necon3bii |
⊢ ( dom 𝑇 ≠ ∅ ↔ ran 𝑇 ≠ ∅ ) |
160 |
157 159
|
sylib |
⊢ ( 𝜑 → ran 𝑇 ≠ ∅ ) |
161 |
|
supxrgtmnf |
⊢ ( ( ran 𝑇 ⊆ ℝ ∧ ran 𝑇 ≠ ∅ ) → -∞ < sup ( ran 𝑇 , ℝ* , < ) ) |
162 |
121 160 161
|
syl2anc |
⊢ ( 𝜑 → -∞ < sup ( ran 𝑇 , ℝ* , < ) ) |
163 |
|
xrre |
⊢ ( ( ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑇 , ℝ* , < ) ∧ sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
164 |
154 130 162 12 163
|
syl22anc |
⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
166 |
|
supxrub |
⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ∈ ran 𝑇 ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
167 |
152 125 166
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
168 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
169 |
126 165 131 167 168
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
170 |
116 126 129 131 151 169
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) + ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
171 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( 2 · 𝑧 ) = ( 2 · 1 ) ) |
172 |
171
|
fveq2d |
⊢ ( 𝑧 = 1 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · 1 ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑧 = 1 → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ 1 ) ) |
174 |
|
fveq2 |
⊢ ( 𝑧 = 1 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 1 ) ) |
175 |
173 174
|
oveq12d |
⊢ ( 𝑧 = 1 → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) |
176 |
172 175
|
eqeq12d |
⊢ ( 𝑧 = 1 → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) ) |
177 |
176
|
imbi2d |
⊢ ( 𝑧 = 1 → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) ) ) |
178 |
|
oveq2 |
⊢ ( 𝑧 = 𝑘 → ( 2 · 𝑧 ) = ( 2 · 𝑘 ) ) |
179 |
178
|
fveq2d |
⊢ ( 𝑧 = 𝑘 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · 𝑘 ) ) ) |
180 |
|
fveq2 |
⊢ ( 𝑧 = 𝑘 → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ 𝑘 ) ) |
181 |
|
fveq2 |
⊢ ( 𝑧 = 𝑘 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑘 ) ) |
182 |
180 181
|
oveq12d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) |
183 |
179 182
|
eqeq12d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) ) |
184 |
183
|
imbi2d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) ) ) |
185 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 2 · 𝑧 ) = ( 2 · ( 𝑘 + 1 ) ) ) |
186 |
185
|
fveq2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) ) |
187 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) |
188 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) |
189 |
187 188
|
oveq12d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) |
190 |
186 189
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) |
191 |
190
|
imbi2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
192 |
|
oveq2 |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 2 · 𝑧 ) = ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
193 |
192
|
fveq2d |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
194 |
|
fveq2 |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 𝑆 ‘ 𝑧 ) = ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
195 |
|
fveq2 |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) |
196 |
194 195
|
oveq12d |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
197 |
193 196
|
eqeq12d |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ↔ ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) ) |
198 |
197
|
imbi2d |
⊢ ( 𝑧 = ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑧 ) ) = ( ( 𝑆 ‘ 𝑧 ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) ) ) |
199 |
6
|
fveq1i |
⊢ ( 𝑈 ‘ ( 2 · 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 1 ) ) |
200 |
136
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
201 |
29
|
ovolfsval |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐻 ‘ 1 ) ) − ( 1st ‘ ( 𝐻 ‘ 1 ) ) ) ) |
202 |
28 136 201
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐻 ‘ 1 ) ) − ( 1st ‘ ( 𝐻 ‘ 1 ) ) ) ) |
203 |
|
halfnz |
⊢ ¬ ( 1 / 2 ) ∈ ℤ |
204 |
|
nnz |
⊢ ( ( 𝑛 / 2 ) ∈ ℕ → ( 𝑛 / 2 ) ∈ ℤ ) |
205 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 / 2 ) = ( 1 / 2 ) ) |
206 |
205
|
eleq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 / 2 ) ∈ ℤ ↔ ( 1 / 2 ) ∈ ℤ ) ) |
207 |
204 206
|
syl5ib |
⊢ ( 𝑛 = 1 → ( ( 𝑛 / 2 ) ∈ ℕ → ( 1 / 2 ) ∈ ℤ ) ) |
208 |
203 207
|
mtoi |
⊢ ( 𝑛 = 1 → ¬ ( 𝑛 / 2 ) ∈ ℕ ) |
209 |
208
|
iffalsed |
⊢ ( 𝑛 = 1 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) |
210 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = ( 1 + 1 ) ) |
211 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
212 |
210 211
|
eqtr4di |
⊢ ( 𝑛 = 1 → ( 𝑛 + 1 ) = 2 ) |
213 |
212
|
oveq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑛 + 1 ) / 2 ) = ( 2 / 2 ) ) |
214 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
215 |
213 214
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( ( 𝑛 + 1 ) / 2 ) = 1 ) |
216 |
215
|
fveq2d |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ 1 ) ) |
217 |
209 216
|
eqtrd |
⊢ ( 𝑛 = 1 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐹 ‘ 1 ) ) |
218 |
|
fvex |
⊢ ( 𝐹 ‘ 1 ) ∈ V |
219 |
217 13 218
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
220 |
136 219
|
ax-mp |
⊢ ( 𝐻 ‘ 1 ) = ( 𝐹 ‘ 1 ) |
221 |
220
|
fveq2i |
⊢ ( 2nd ‘ ( 𝐻 ‘ 1 ) ) = ( 2nd ‘ ( 𝐹 ‘ 1 ) ) |
222 |
220
|
fveq2i |
⊢ ( 1st ‘ ( 𝐻 ‘ 1 ) ) = ( 1st ‘ ( 𝐹 ‘ 1 ) ) |
223 |
221 222
|
oveq12i |
⊢ ( ( 2nd ‘ ( 𝐻 ‘ 1 ) ) − ( 1st ‘ ( 𝐻 ‘ 1 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) |
224 |
202 223
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
225 |
61 224
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
226 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
227 |
226
|
fveq2i |
⊢ ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( 2 · 1 ) ) = ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) |
228 |
29
|
ovolfsval |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 2 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) = ( ( 2nd ‘ ( 𝐻 ‘ 2 ) ) − ( 1st ‘ ( 𝐻 ‘ 2 ) ) ) ) |
229 |
28 36 228
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) = ( ( 2nd ‘ ( 𝐻 ‘ 2 ) ) − ( 1st ‘ ( 𝐻 ‘ 2 ) ) ) ) |
230 |
|
oveq1 |
⊢ ( 𝑛 = 2 → ( 𝑛 / 2 ) = ( 2 / 2 ) ) |
231 |
230 214
|
eqtrdi |
⊢ ( 𝑛 = 2 → ( 𝑛 / 2 ) = 1 ) |
232 |
231 136
|
eqeltrdi |
⊢ ( 𝑛 = 2 → ( 𝑛 / 2 ) ∈ ℕ ) |
233 |
232
|
iftrued |
⊢ ( 𝑛 = 2 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) |
234 |
231
|
fveq2d |
⊢ ( 𝑛 = 2 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ 1 ) ) |
235 |
233 234
|
eqtrd |
⊢ ( 𝑛 = 2 → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = ( 𝐺 ‘ 1 ) ) |
236 |
|
fvex |
⊢ ( 𝐺 ‘ 1 ) ∈ V |
237 |
235 13 236
|
fvmpt |
⊢ ( 2 ∈ ℕ → ( 𝐻 ‘ 2 ) = ( 𝐺 ‘ 1 ) ) |
238 |
36 237
|
ax-mp |
⊢ ( 𝐻 ‘ 2 ) = ( 𝐺 ‘ 1 ) |
239 |
238
|
fveq2i |
⊢ ( 2nd ‘ ( 𝐻 ‘ 2 ) ) = ( 2nd ‘ ( 𝐺 ‘ 1 ) ) |
240 |
238
|
fveq2i |
⊢ ( 1st ‘ ( 𝐻 ‘ 2 ) ) = ( 1st ‘ ( 𝐺 ‘ 1 ) ) |
241 |
239 240
|
oveq12i |
⊢ ( ( 2nd ‘ ( 𝐻 ‘ 2 ) ) − ( 1st ‘ ( 𝐻 ‘ 2 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) |
242 |
229 241
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 2 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
243 |
227 242
|
syl5eq |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( 2 · 1 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
244 |
78 200 43 225 243
|
seqp1d |
⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 1 ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) + ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
245 |
199 244
|
syl5eq |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) + ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
246 |
4
|
fveq1i |
⊢ ( 𝑆 ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 1 ) |
247 |
107
|
ovolfsval |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
248 |
23 136 247
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
249 |
61 248
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
250 |
246 249
|
syl5eq |
⊢ ( 𝜑 → ( 𝑆 ‘ 1 ) = ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) ) |
251 |
5
|
fveq1i |
⊢ ( 𝑇 ‘ 1 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) |
252 |
117
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 1 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
253 |
15 136 252
|
sylancl |
⊢ ( 𝜑 → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
254 |
61 253
|
seq1i |
⊢ ( 𝜑 → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
255 |
251 254
|
syl5eq |
⊢ ( 𝜑 → ( 𝑇 ‘ 1 ) = ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) |
256 |
250 255
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ 1 ) ) − ( 1st ‘ ( 𝐹 ‘ 1 ) ) ) + ( ( 2nd ‘ ( 𝐺 ‘ 1 ) ) − ( 1st ‘ ( 𝐺 ‘ 1 ) ) ) ) ) |
257 |
245 256
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 2 · 1 ) ) = ( ( 𝑆 ‘ 1 ) + ( 𝑇 ‘ 1 ) ) ) |
258 |
|
oveq1 |
⊢ ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
259 |
43
|
oveq2i |
⊢ ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑘 ) + ( 1 + 1 ) ) |
260 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 2 ∈ ℂ ) |
261 |
47
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
262 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) |
263 |
260 261 262
|
adddid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( 2 · 𝑘 ) + ( 2 · 1 ) ) ) |
264 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
265 |
36 264
|
mpan |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) ∈ ℕ ) |
266 |
265
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℕ ) |
267 |
266
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ℂ ) |
268 |
267 262 262
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) = ( ( 2 · 𝑘 ) + ( 1 + 1 ) ) ) |
269 |
259 263 268
|
3eqtr4a |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) |
270 |
269
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( 𝑈 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) |
271 |
6
|
fveq1i |
⊢ ( 𝑈 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) |
272 |
266
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
273 |
272 78
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
274 |
|
seqp1 |
⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) |
275 |
273 274
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) |
276 |
266 78
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
277 |
|
seqp1 |
⊢ ( ( 2 · 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
278 |
276 277
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
279 |
6
|
fveq1i |
⊢ ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) |
280 |
279
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) ) |
281 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝑛 / 2 ) = ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) |
282 |
281
|
eleq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) ) |
283 |
281
|
fveq2d |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) ) |
284 |
|
oveq1 |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝑛 + 1 ) = ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) |
285 |
284
|
fvoveq1d |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) |
286 |
282 283 285
|
ifbieq12d |
⊢ ( 𝑛 = ( ( 2 · 𝑘 ) + 1 ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ) |
287 |
|
fvex |
⊢ ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) ∈ V |
288 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ∈ V |
289 |
287 288
|
ifex |
⊢ if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ∈ V |
290 |
286 13 289
|
fvmpt |
⊢ ( ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ → ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ) |
291 |
272 290
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) ) |
292 |
|
2ne0 |
⊢ 2 ≠ 0 |
293 |
292
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 2 ≠ 0 ) |
294 |
261 260 293
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) / 2 ) = 𝑘 ) |
295 |
294 77
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · 𝑘 ) / 2 ) ∈ ℕ ) |
296 |
|
nneo |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ → ( ( ( 2 · 𝑘 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) ) |
297 |
266 296
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) / 2 ) ∈ ℕ ↔ ¬ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) ) |
298 |
295 297
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ¬ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ ) |
299 |
298
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( ( 2 · 𝑘 ) + 1 ) / 2 ) ) , ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) = ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) ) |
300 |
269
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) |
301 |
38
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℂ ) |
302 |
|
2cn |
⊢ 2 ∈ ℂ |
303 |
|
divcan3 |
⊢ ( ( ( 𝑘 + 1 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( 𝑘 + 1 ) ) |
304 |
302 292 303
|
mp3an23 |
⊢ ( ( 𝑘 + 1 ) ∈ ℂ → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( 𝑘 + 1 ) ) |
305 |
301 304
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) = ( 𝑘 + 1 ) ) |
306 |
300 305
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) = ( 𝑘 + 1 ) ) |
307 |
306
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) / 2 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
308 |
291 299 307
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
309 |
308
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
310 |
308
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
311 |
309 310
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
312 |
29
|
ovolfsval |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
313 |
28 272 312
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
314 |
107
|
ovolfsval |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
315 |
23 37 314
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
316 |
311 313 315
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) = ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) |
317 |
280 316
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
318 |
278 317
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
319 |
269
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) |
320 |
272
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ∈ ℕ ) |
321 |
269 320
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ ) |
322 |
|
oveq1 |
⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝑛 / 2 ) = ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) |
323 |
322
|
eleq1d |
⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( ( 𝑛 / 2 ) ∈ ℕ ↔ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ ) ) |
324 |
322
|
fveq2d |
⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) ) |
325 |
|
oveq1 |
⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝑛 + 1 ) = ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) ) |
326 |
325
|
fvoveq1d |
⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) = ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) |
327 |
323 324 326
|
ifbieq12d |
⊢ ( 𝑛 = ( 2 · ( 𝑘 + 1 ) ) → if ( ( 𝑛 / 2 ) ∈ ℕ , ( 𝐺 ‘ ( 𝑛 / 2 ) ) , ( 𝐹 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) = if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ) |
328 |
|
fvex |
⊢ ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) ∈ V |
329 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ∈ V |
330 |
328 329
|
ifex |
⊢ if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ∈ V |
331 |
327 13 330
|
fvmpt |
⊢ ( ( 2 · ( 𝑘 + 1 ) ) ∈ ℕ → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ) |
332 |
321 331
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) ) |
333 |
305 38
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ ) |
334 |
333
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → if ( ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ∈ ℕ , ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) , ( 𝐹 ‘ ( ( ( 2 · ( 𝑘 + 1 ) ) + 1 ) / 2 ) ) ) = ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) ) |
335 |
305
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( ( 2 · ( 𝑘 + 1 ) ) / 2 ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
336 |
332 334 335
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
337 |
319 336
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
338 |
337
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) = ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
339 |
337
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) = ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
340 |
338 339
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
341 |
29
|
ovolfsval |
⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) ) |
342 |
28 320 341
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( 2nd ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) − ( 1st ‘ ( 𝐻 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) ) ) |
343 |
117
|
ovolfsval |
⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
344 |
15 37 343
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( ( 2nd ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) − ( 1st ‘ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) ) |
345 |
340 342 344
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
346 |
318 345
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( 2 · 𝑘 ) + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) ) = ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
347 |
275 346
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
348 |
271 347
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( ( ( 2 · 𝑘 ) + 1 ) + 1 ) ) = ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
349 |
|
ffvelrn |
⊢ ( ( 𝑈 : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 2 · 𝑘 ) ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
350 |
31 265 349
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ( 0 [,) +∞ ) ) |
351 |
32 350
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ℝ ) |
352 |
351
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · 𝑘 ) ) ∈ ℂ ) |
353 |
107
|
ovolfsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
354 |
23 353
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
355 |
|
ffvelrn |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) |
356 |
354 37 355
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) |
357 |
32 356
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
358 |
357
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
359 |
117
|
ovolfsf |
⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
360 |
15 359
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
361 |
|
ffvelrn |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐺 ) : ℕ ⟶ ( 0 [,) +∞ ) ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) |
362 |
360 37 361
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 0 [,) +∞ ) ) |
363 |
32 362
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
364 |
363
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
365 |
352 358 364
|
addassd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
366 |
270 348 365
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
367 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
368 |
79 367
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
369 |
4
|
fveq1i |
⊢ ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ ( 𝑘 + 1 ) ) |
370 |
4
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) |
371 |
370
|
oveq1i |
⊢ ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) |
372 |
368 369 371
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) ) |
373 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
374 |
79 373
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
375 |
5
|
fveq1i |
⊢ ( 𝑇 ‘ ( 𝑘 + 1 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ ( 𝑘 + 1 ) ) |
376 |
5
|
fveq1i |
⊢ ( 𝑇 ‘ 𝑘 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) |
377 |
376
|
oveq1i |
⊢ ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
378 |
374 375 377
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) |
379 |
372 378
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
380 |
109
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
381 |
32 380
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ℝ ) |
382 |
381
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ℂ ) |
383 |
119
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ∈ ( 0 [,) +∞ ) ) |
384 |
32 383
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ∈ ℝ ) |
385 |
384
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑇 ‘ 𝑘 ) ∈ ℂ ) |
386 |
382 358 385 364
|
add4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑆 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) ) + ( ( 𝑇 ‘ 𝑘 ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
387 |
379 386
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
388 |
366 387
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ↔ ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) + ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝑘 + 1 ) ) + ( ( ( abs ∘ − ) ∘ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
389 |
258 388
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) |
390 |
389
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
391 |
390
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( 𝑈 ‘ ( 2 · 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) + ( 𝑇 ‘ 𝑘 ) ) ) → ( 𝜑 → ( 𝑈 ‘ ( 2 · ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) + ( 𝑇 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
392 |
177 184 191 198 257 391
|
nnind |
⊢ ( ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ → ( 𝜑 → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) ) |
393 |
392
|
impcom |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
394 |
66 393
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) = ( ( 𝑆 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) + ( 𝑇 ‘ ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ) |
395 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
396 |
395
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
397 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
398 |
397
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 / 2 ) ∈ ℝ ) |
399 |
398
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐶 / 2 ) ∈ ℂ ) |
400 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
401 |
400
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐵 ) ∈ ℂ ) |
402 |
396 399 401 399
|
add4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) + ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) = ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ) ) |
403 |
397
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
404 |
403
|
2halvesd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) = 𝐶 ) |
405 |
404
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + ( ( 𝐶 / 2 ) + ( 𝐶 / 2 ) ) ) = ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
406 |
402 405
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) = ( ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) + ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
407 |
170 394 406
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ ( 2 · ( ⌊ ‘ ( ( 𝑘 + 1 ) / 2 ) ) ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
408 |
35 70 76 106 407
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑈 ‘ 𝑘 ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |