Step |
Hyp |
Ref |
Expression |
1 |
|
ovolun.a |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
2 |
|
ovolun.b |
⊢ ( 𝜑 → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
3 |
|
ovolun.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
1
|
simpld |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
5 |
1
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
6 |
3
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐶 / 2 ) ∈ ℝ+ ) |
7 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) |
8 |
7
|
ovolgelb |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ+ ) → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ) |
9 |
4 5 6 8
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ) |
10 |
2
|
simpld |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
11 |
2
|
simprd |
⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
12 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) |
13 |
12
|
ovolgelb |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐶 / 2 ) ∈ ℝ+ ) → ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
14 |
10 11 6 13
|
syl3anc |
⊢ ( 𝜑 → ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) |
15 |
|
reeanv |
⊢ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ↔ ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) |
16 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
17 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
18 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝐶 ∈ ℝ+ ) |
19 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) ) ) |
20 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
21 |
|
simp3ll |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ) |
22 |
|
simp3lr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) |
23 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
24 |
|
simp3rl |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ) |
25 |
|
simp3rr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) |
26 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( ( 𝑛 / 2 ) ∈ ℕ , ( ℎ ‘ ( 𝑛 / 2 ) ) , ( 𝑔 ‘ ( ( 𝑛 + 1 ) / 2 ) ) ) ) |
27 |
16 17 18 7 12 19 20 21 22 23 24 25 26
|
ovolunlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |
28 |
27
|
3exp |
⊢ ( 𝜑 → ( ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) ) |
29 |
28
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
30 |
15 29
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐶 / 2 ) ) ) ∧ ∃ ℎ ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ ℎ ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ℎ ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐵 ) + ( 𝐶 / 2 ) ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) ) |
31 |
9 14 30
|
mp2and |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) + 𝐶 ) ) |