Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 𝐴 ⊆ ℝ ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 𝐵 ⊆ ℝ ) |
3 |
1 2
|
unssd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
4 |
|
ovolcl |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) |
6 |
|
ovolcl |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
8 |
|
xrltnle |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) → ( ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
9 |
7 5 8
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ↔ ¬ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
10 |
1
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → 𝐴 ⊆ ℝ ) |
11 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
12 |
11
|
a1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → -∞ ∈ ℝ* ) |
13 |
10 6
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
14 |
5
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) |
15 |
|
ovolge0 |
⊢ ( 𝐴 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝐴 ) ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → 0 ≤ ( vol* ‘ 𝐴 ) ) |
17 |
|
ge0gtmnf |
⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( vol* ‘ 𝐴 ) ) → -∞ < ( vol* ‘ 𝐴 ) ) |
18 |
7 16 17
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → -∞ < ( vol* ‘ 𝐴 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → -∞ < ( vol* ‘ 𝐴 ) ) |
20 |
|
simpr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
21 |
|
xrre2 |
⊢ ( ( ( -∞ ∈ ℝ* ∧ ( vol* ‘ 𝐴 ) ∈ ℝ* ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ* ) ∧ ( -∞ < ( vol* ‘ 𝐴 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
22 |
12 13 14 19 20 21
|
syl32anc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
23 |
2
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → 𝐵 ⊆ ℝ ) |
24 |
|
simpl3 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐵 ) = 0 ) |
25 |
|
0re |
⊢ 0 ∈ ℝ |
26 |
24 25
|
eqeltrdi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) |
27 |
|
ovolun |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
28 |
10 22 23 26 27
|
syl22anc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
29 |
24
|
oveq2d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + 0 ) ) |
30 |
22
|
recnd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
31 |
30
|
addid1d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( vol* ‘ 𝐴 ) + 0 ) = ( vol* ‘ 𝐴 ) ) |
32 |
29 31
|
eqtrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) = ( vol* ‘ 𝐴 ) ) |
33 |
28 32
|
breqtrd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) ∧ ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ( vol* ‘ 𝐴 ) < ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
35 |
9 34
|
sylbird |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( ¬ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) ) |
36 |
35
|
pm2.18d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( vol* ‘ 𝐴 ) ) |
37 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
38 |
|
ovolss |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
39 |
37 3 38
|
sylancr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
40 |
5 7 36 39
|
xrletrid |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) = 0 ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( vol* ‘ 𝐴 ) ) |