Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ovprc1.1 | ⊢ Rel dom 𝐹 | |
Assertion | ovprc | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovprc1.1 | ⊢ Rel dom 𝐹 | |
2 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
3 | df-br | ⊢ ( 𝐴 dom 𝐹 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 ) | |
4 | 1 | brrelex12i | ⊢ ( 𝐴 dom 𝐹 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
5 | 3 4 | sylbir | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
6 | ndmfv | ⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom 𝐹 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) | |
7 | 5 6 | nsyl5 | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) |
8 | 2 7 | eqtrid | ⊢ ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = ∅ ) |