Metamath Proof Explorer


Theorem ovrcl

Description: Reverse closure for an operation value. (Contributed by Mario Carneiro, 5-May-2015)

Ref Expression
Hypothesis ovprc1.1 Rel dom 𝐹
Assertion ovrcl ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )

Proof

Step Hyp Ref Expression
1 ovprc1.1 Rel dom 𝐹
2 n0i ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) → ¬ ( 𝐴 𝐹 𝐵 ) = ∅ )
3 1 ovprc ( ¬ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐹 𝐵 ) = ∅ )
4 2 3 nsyl2 ( 𝐶 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )