Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | ovres | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ( 𝐹 ↾ ( 𝐶 × 𝐷 ) ) 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 〈 𝐴 , 𝐵 〉 ∈ ( 𝐶 × 𝐷 ) ) | |
2 | 1 | fvresd | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐹 ↾ ( 𝐶 × 𝐷 ) ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ) |
3 | df-ov | ⊢ ( 𝐴 ( 𝐹 ↾ ( 𝐶 × 𝐷 ) ) 𝐵 ) = ( ( 𝐹 ↾ ( 𝐶 × 𝐷 ) ) ‘ 〈 𝐴 , 𝐵 〉 ) | |
4 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ( 𝐹 ↾ ( 𝐶 × 𝐷 ) ) 𝐵 ) = ( 𝐴 𝐹 𝐵 ) ) |