Metamath Proof Explorer
Description: Lemma for converting metric theorems to metric space theorems.
(Contributed by Mario Carneiro, 2-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
ovresd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
|
|
ovresd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) |
|
Assertion |
ovresd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ovresd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
2 |
|
ovresd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) |
3 |
|
ovres |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |