Metamath Proof Explorer


Theorem ovresd

Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ovresd.1 ( 𝜑𝐴𝑋 )
ovresd.2 ( 𝜑𝐵𝑋 )
Assertion ovresd ( 𝜑 → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ovresd.1 ( 𝜑𝐴𝑋 )
2 ovresd.2 ( 𝜑𝐵𝑋 )
3 ovres ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )