Step |
Hyp |
Ref |
Expression |
1 |
|
p1evtxdeq.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
p1evtxdeq.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
p1evtxdeq.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
4 |
|
p1evtxdeq.fv |
⊢ ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 ) |
5 |
|
p1evtxdeq.fi |
⊢ ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 𝐾 , 𝐸 〉 } ) ) |
6 |
|
p1evtxdeq.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
7 |
|
p1evtxdeq.d |
⊢ ( 𝜑 → 𝐾 ∉ dom 𝐼 ) |
8 |
|
p1evtxdeq.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
9 |
|
p1evtxdeq.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) |
10 |
|
p1evtxdeq.n |
⊢ ( 𝜑 → 𝑈 ∉ 𝐸 ) |
11 |
1 2 3 4 5 6 7 8 9
|
p1evtxdeqlem |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) ) |
12 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
13 |
|
snex |
⊢ { 〈 𝐾 , 𝐸 〉 } ∈ V |
14 |
12 13
|
pm3.2i |
⊢ ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) |
15 |
|
opiedgfv |
⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) |
16 |
14 15
|
mp1i |
⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) |
17 |
|
opvtxfv |
⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) |
18 |
14 17
|
mp1i |
⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) |
19 |
16 18 6 8 9 10
|
1hevtxdg0 |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) = 0 ) |
20 |
19
|
oveq2d |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) ) |
21 |
1
|
vtxdgelxnn0 |
⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* ) |
22 |
|
xnn0xr |
⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* ) |
23 |
8 21 22
|
3syl |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* ) |
24 |
23
|
xaddid1d |
⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
25 |
11 20 24
|
3eqtrd |
⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |