Metamath Proof Explorer


Theorem p1evtxdeq

Description: If an edge E which does not contain vertex U is added to a graph G (yielding a graph F ), the degree of U is the same in both graphs. (Contributed by AV, 2-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
p1evtxdeq.i 𝐼 = ( iEdg ‘ 𝐺 )
p1evtxdeq.f ( 𝜑 → Fun 𝐼 )
p1evtxdeq.fv ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 )
p1evtxdeq.fi ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ 𝐾 , 𝐸 ⟩ } ) )
p1evtxdeq.k ( 𝜑𝐾𝑋 )
p1evtxdeq.d ( 𝜑𝐾 ∉ dom 𝐼 )
p1evtxdeq.u ( 𝜑𝑈𝑉 )
p1evtxdeq.e ( 𝜑𝐸𝑌 )
p1evtxdeq.n ( 𝜑𝑈𝐸 )
Assertion p1evtxdeq ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
2 p1evtxdeq.i 𝐼 = ( iEdg ‘ 𝐺 )
3 p1evtxdeq.f ( 𝜑 → Fun 𝐼 )
4 p1evtxdeq.fv ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 )
5 p1evtxdeq.fi ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ 𝐾 , 𝐸 ⟩ } ) )
6 p1evtxdeq.k ( 𝜑𝐾𝑋 )
7 p1evtxdeq.d ( 𝜑𝐾 ∉ dom 𝐼 )
8 p1evtxdeq.u ( 𝜑𝑈𝑉 )
9 p1evtxdeq.e ( 𝜑𝐸𝑌 )
10 p1evtxdeq.n ( 𝜑𝑈𝐸 )
11 1 2 3 4 5 6 7 8 9 p1evtxdeqlem ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) ) )
12 1 fvexi 𝑉 ∈ V
13 snex { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V
14 12 13 pm3.2i ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V )
15 opiedgfv ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = { ⟨ 𝐾 , 𝐸 ⟩ } )
16 14 15 mp1i ( 𝜑 → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = { ⟨ 𝐾 , 𝐸 ⟩ } )
17 opvtxfv ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = 𝑉 )
18 14 17 mp1i ( 𝜑 → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = 𝑉 )
19 16 18 6 8 9 10 1hevtxdg0 ( 𝜑 → ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) = 0 )
20 19 oveq2d ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) )
21 1 vtxdgelxnn0 ( 𝑈𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* )
22 xnn0xr ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* )
23 8 21 22 3syl ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* )
24 23 xaddid1d ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) )
25 11 20 24 3eqtrd ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) )