Metamath Proof Explorer


Theorem p1evtxdeqlem

Description: Lemma for p1evtxdeq and p1evtxdp1 . (Contributed by AV, 3-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
p1evtxdeq.i 𝐼 = ( iEdg ‘ 𝐺 )
p1evtxdeq.f ( 𝜑 → Fun 𝐼 )
p1evtxdeq.fv ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 )
p1evtxdeq.fi ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ 𝐾 , 𝐸 ⟩ } ) )
p1evtxdeq.k ( 𝜑𝐾𝑋 )
p1evtxdeq.d ( 𝜑𝐾 ∉ dom 𝐼 )
p1evtxdeq.u ( 𝜑𝑈𝑉 )
p1evtxdeq.e ( 𝜑𝐸𝑌 )
Assertion p1evtxdeqlem ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
2 p1evtxdeq.i 𝐼 = ( iEdg ‘ 𝐺 )
3 p1evtxdeq.f ( 𝜑 → Fun 𝐼 )
4 p1evtxdeq.fv ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 )
5 p1evtxdeq.fi ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ 𝐾 , 𝐸 ⟩ } ) )
6 p1evtxdeq.k ( 𝜑𝐾𝑋 )
7 p1evtxdeq.d ( 𝜑𝐾 ∉ dom 𝐼 )
8 p1evtxdeq.u ( 𝜑𝑈𝑉 )
9 p1evtxdeq.e ( 𝜑𝐸𝑌 )
10 1 fvexi 𝑉 ∈ V
11 snex { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V
12 10 11 pm3.2i ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V )
13 opiedgfv ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = { ⟨ 𝐾 , 𝐸 ⟩ } )
14 13 eqcomd ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → { ⟨ 𝐾 , 𝐸 ⟩ } = ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) )
15 12 14 ax-mp { ⟨ 𝐾 , 𝐸 ⟩ } = ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ )
16 opvtxfv ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = 𝑉 )
17 12 16 mp1i ( 𝜑 → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = 𝑉 )
18 dmsnopg ( 𝐸𝑌 → dom { ⟨ 𝐾 , 𝐸 ⟩ } = { 𝐾 } )
19 9 18 syl ( 𝜑 → dom { ⟨ 𝐾 , 𝐸 ⟩ } = { 𝐾 } )
20 19 ineq2d ( 𝜑 → ( dom 𝐼 ∩ dom { ⟨ 𝐾 , 𝐸 ⟩ } ) = ( dom 𝐼 ∩ { 𝐾 } ) )
21 df-nel ( 𝐾 ∉ dom 𝐼 ↔ ¬ 𝐾 ∈ dom 𝐼 )
22 7 21 sylib ( 𝜑 → ¬ 𝐾 ∈ dom 𝐼 )
23 disjsn ( ( dom 𝐼 ∩ { 𝐾 } ) = ∅ ↔ ¬ 𝐾 ∈ dom 𝐼 )
24 22 23 sylibr ( 𝜑 → ( dom 𝐼 ∩ { 𝐾 } ) = ∅ )
25 20 24 eqtrd ( 𝜑 → ( dom 𝐼 ∩ dom { ⟨ 𝐾 , 𝐸 ⟩ } ) = ∅ )
26 funsng ( ( 𝐾𝑋𝐸𝑌 ) → Fun { ⟨ 𝐾 , 𝐸 ⟩ } )
27 6 9 26 syl2anc ( 𝜑 → Fun { ⟨ 𝐾 , 𝐸 ⟩ } )
28 2 15 1 17 4 25 3 27 8 5 vtxdun ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) ) )