Metamath Proof Explorer


Theorem p1evtxdp1

Description: If an edge E (not being a loop) which contains vertex U is added to a graph G (yielding a graph F ), the degree of U is increased by 1. (Contributed by AV, 3-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
p1evtxdeq.i 𝐼 = ( iEdg ‘ 𝐺 )
p1evtxdeq.f ( 𝜑 → Fun 𝐼 )
p1evtxdeq.fv ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 )
p1evtxdeq.fi ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ 𝐾 , 𝐸 ⟩ } ) )
p1evtxdeq.k ( 𝜑𝐾𝑋 )
p1evtxdeq.d ( 𝜑𝐾 ∉ dom 𝐼 )
p1evtxdeq.u ( 𝜑𝑈𝑉 )
p1evtxdp1.e ( 𝜑𝐸 ∈ 𝒫 𝑉 )
p1evtxdp1.n ( 𝜑𝑈𝐸 )
p1evtxdp1.l ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) )
Assertion p1evtxdp1 ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) )

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v 𝑉 = ( Vtx ‘ 𝐺 )
2 p1evtxdeq.i 𝐼 = ( iEdg ‘ 𝐺 )
3 p1evtxdeq.f ( 𝜑 → Fun 𝐼 )
4 p1evtxdeq.fv ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 )
5 p1evtxdeq.fi ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { ⟨ 𝐾 , 𝐸 ⟩ } ) )
6 p1evtxdeq.k ( 𝜑𝐾𝑋 )
7 p1evtxdeq.d ( 𝜑𝐾 ∉ dom 𝐼 )
8 p1evtxdeq.u ( 𝜑𝑈𝑉 )
9 p1evtxdp1.e ( 𝜑𝐸 ∈ 𝒫 𝑉 )
10 p1evtxdp1.n ( 𝜑𝑈𝐸 )
11 p1evtxdp1.l ( 𝜑 → 2 ≤ ( ♯ ‘ 𝐸 ) )
12 1 2 3 4 5 6 7 8 9 p1evtxdeqlem ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) ) )
13 1 fvexi 𝑉 ∈ V
14 snex { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V
15 13 14 pm3.2i ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V )
16 opiedgfv ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = { ⟨ 𝐾 , 𝐸 ⟩ } )
17 15 16 mp1i ( 𝜑 → ( iEdg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = { ⟨ 𝐾 , 𝐸 ⟩ } )
18 opvtxfv ( ( 𝑉 ∈ V ∧ { ⟨ 𝐾 , 𝐸 ⟩ } ∈ V ) → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = 𝑉 )
19 15 18 mp1i ( 𝜑 → ( Vtx ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) = 𝑉 )
20 17 19 6 8 9 10 11 1hevtxdg1 ( 𝜑 → ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) = 1 )
21 20 oveq2d ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ ⟨ 𝑉 , { ⟨ 𝐾 , 𝐸 ⟩ } ⟩ ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) )
22 12 21 eqtrd ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 1 ) )