Metamath Proof Explorer


Theorem p1le

Description: A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005)

Ref Expression
Assertion p1le ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 lep1 ( 𝐴 ∈ ℝ → 𝐴 ≤ ( 𝐴 + 1 ) )
2 1 adantr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ ( 𝐴 + 1 ) )
3 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
4 3 ancli ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) )
5 letr ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴𝐵 ) )
6 5 3expa ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴𝐵 ) )
7 4 6 sylan ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴𝐵 ) )
8 2 7 mpand ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) ≤ 𝐵𝐴𝐵 ) )
9 8 3impia ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴𝐵 )