Step |
Hyp |
Ref |
Expression |
1 |
|
lep1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( 𝐴 + 1 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≤ ( 𝐴 + 1 ) ) |
3 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
4 |
3
|
ancli |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ) |
5 |
|
letr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
7 |
4 6
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ ( 𝐴 + 1 ) ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) ) |
8 |
2 7
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 + 1 ) ≤ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
9 |
8
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 + 1 ) ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |