Step |
Hyp |
Ref |
Expression |
1 |
|
dvdszrcl |
⊢ ( 𝑀 ∥ 𝐴 → ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
2 |
|
0red |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 0 ∈ ℝ ) |
3 |
|
1red |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 1 ∈ ℝ ) |
4 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
5 |
4
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 𝑀 ∈ ℝ ) |
6 |
2 3 5
|
3jca |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
7 |
|
0lt1 |
⊢ 0 < 1 |
8 |
7
|
a1i |
⊢ ( 𝑀 ∈ ℤ → 0 < 1 ) |
9 |
8
|
anim1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → ( 0 < 1 ∧ 1 < 𝑀 ) ) |
10 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝑀 ) → 0 < 𝑀 ) ) |
11 |
6 9 10
|
sylc |
⊢ ( ( 𝑀 ∈ ℤ ∧ 1 < 𝑀 ) → 0 < 𝑀 ) |
12 |
11
|
ex |
⊢ ( 𝑀 ∈ ℤ → ( 1 < 𝑀 → 0 < 𝑀 ) ) |
13 |
|
elnnz |
⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℤ ∧ 0 < 𝑀 ) ) |
14 |
13
|
simplbi2 |
⊢ ( 𝑀 ∈ ℤ → ( 0 < 𝑀 → 𝑀 ∈ ℕ ) ) |
15 |
12 14
|
syld |
⊢ ( 𝑀 ∈ ℤ → ( 1 < 𝑀 → 𝑀 ∈ ℕ ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝑀 → 𝑀 ∈ ℕ ) ) |
17 |
16
|
imp |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 𝑀 ∈ ℕ ) |
18 |
|
dvdsmod0 |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝐴 ) → ( 𝐴 mod 𝑀 ) = 0 ) |
19 |
17 18
|
sylan |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ 𝑀 ∥ 𝐴 ) → ( 𝐴 mod 𝑀 ) = 0 ) |
20 |
19
|
ex |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 𝑀 ∥ 𝐴 → ( 𝐴 mod 𝑀 ) = 0 ) ) |
21 |
|
oveq1 |
⊢ ( ( 𝐴 mod 𝑀 ) = 0 → ( ( 𝐴 mod 𝑀 ) + 1 ) = ( 0 + 1 ) ) |
22 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
23 |
21 22
|
eqtrdi |
⊢ ( ( 𝐴 mod 𝑀 ) = 0 → ( ( 𝐴 mod 𝑀 ) + 1 ) = 1 ) |
24 |
23
|
oveq1d |
⊢ ( ( 𝐴 mod 𝑀 ) = 0 → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
25 |
24
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
26 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
27 |
26
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 𝐴 ∈ ℝ ) |
29 |
|
1red |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 1 ∈ ℝ ) |
30 |
17
|
nnrpd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → 𝑀 ∈ ℝ+ ) |
31 |
28 29 30
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
32 |
31
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) ) |
33 |
|
modaddmod |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( ( ( 𝐴 mod 𝑀 ) + 1 ) mod 𝑀 ) = ( ( 𝐴 + 1 ) mod 𝑀 ) ) |
35 |
4
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
36 |
|
1mod |
⊢ ( ( 𝑀 ∈ ℝ ∧ 1 < 𝑀 ) → ( 1 mod 𝑀 ) = 1 ) |
37 |
35 36
|
sylan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 1 mod 𝑀 ) = 1 ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( 1 mod 𝑀 ) = 1 ) |
39 |
25 34 38
|
3eqtr3d |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) ∧ ( 𝐴 mod 𝑀 ) = 0 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) |
40 |
39
|
ex |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( ( 𝐴 mod 𝑀 ) = 0 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) |
41 |
20 40
|
syld |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ 1 < 𝑀 ) → ( 𝑀 ∥ 𝐴 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) |
42 |
41
|
ex |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝑀 → ( 𝑀 ∥ 𝐴 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) ) |
43 |
42
|
com23 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝑀 ∥ 𝐴 → ( 1 < 𝑀 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) ) |
44 |
1 43
|
mpcom |
⊢ ( 𝑀 ∥ 𝐴 → ( 1 < 𝑀 → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) ) |
45 |
44
|
imp |
⊢ ( ( 𝑀 ∥ 𝐴 ∧ 1 < 𝑀 ) → ( ( 𝐴 + 1 ) mod 𝑀 ) = 1 ) |