Metamath Proof Explorer


Theorem padd02

Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion padd02 ( ( 𝐾𝐵𝑋𝐴 ) → ( ∅ + 𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 simpl ( ( 𝐾𝐵𝑋𝐴 ) → 𝐾𝐵 )
4 0ss ∅ ⊆ 𝐴
5 4 a1i ( ( 𝐾𝐵𝑋𝐴 ) → ∅ ⊆ 𝐴 )
6 simpr ( ( 𝐾𝐵𝑋𝐴 ) → 𝑋𝐴 )
7 3 5 6 3jca ( ( 𝐾𝐵𝑋𝐴 ) → ( 𝐾𝐵 ∧ ∅ ⊆ 𝐴𝑋𝐴 ) )
8 neirr ¬ ∅ ≠ ∅
9 8 intnanr ¬ ( ∅ ≠ ∅ ∧ 𝑋 ≠ ∅ )
10 1 2 paddval0 ( ( ( 𝐾𝐵 ∧ ∅ ⊆ 𝐴𝑋𝐴 ) ∧ ¬ ( ∅ ≠ ∅ ∧ 𝑋 ≠ ∅ ) ) → ( ∅ + 𝑋 ) = ( ∅ ∪ 𝑋 ) )
11 7 9 10 sylancl ( ( 𝐾𝐵𝑋𝐴 ) → ( ∅ + 𝑋 ) = ( ∅ ∪ 𝑋 ) )
12 uncom ( ∅ ∪ 𝑋 ) = ( 𝑋 ∪ ∅ )
13 un0 ( 𝑋 ∪ ∅ ) = 𝑋
14 12 13 eqtri ( ∅ ∪ 𝑋 ) = 𝑋
15 11 14 eqtrdi ( ( 𝐾𝐵𝑋𝐴 ) → ( ∅ + 𝑋 ) = 𝑋 )