| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddass.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddass.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 4 |
|
simp2r |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) |
| 5 |
|
simp3l |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) |
| 6 |
|
simp3r |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑊 ⊆ 𝐴 ) |
| 7 |
1 2
|
padd12N |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑌 + ( 𝑍 + 𝑊 ) ) = ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) |
| 8 |
3 4 5 6 7
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑌 + ( 𝑍 + 𝑊 ) ) = ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) |
| 9 |
8
|
oveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 10 |
|
simp2l |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) |
| 11 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( 𝑍 + 𝑊 ) ⊆ 𝐴 ) |
| 12 |
3 5 6 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑍 + 𝑊 ) ⊆ 𝐴 ) |
| 13 |
1 2
|
paddass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ ( 𝑍 + 𝑊 ) ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |
| 14 |
3 10 4 12 13
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |
| 15 |
1 2
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( 𝑌 + 𝑊 ) ⊆ 𝐴 ) |
| 16 |
3 4 6 15
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( 𝑌 + 𝑊 ) ⊆ 𝐴 ) |
| 17 |
1 2
|
paddass |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ∧ ( 𝑌 + 𝑊 ) ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 18 |
3 10 5 16 17
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 19 |
9 14 18
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |