Metamath Proof Explorer
Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)
|
|
Ref |
Expression |
|
Hypotheses |
paddasslem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
paddasslem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
|
paddasslem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
Assertion |
paddasslem1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) → ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddasslem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddasslem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
1 2 3
|
hlatexch2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) → ( 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) → 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
5 |
4
|
con3dimp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 ≠ 𝑦 ) ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) → ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ) |