Metamath Proof Explorer


Theorem paddasslem1

Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l = ( le ‘ 𝐾 )
paddasslem.j = ( join ‘ 𝐾 )
paddasslem.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion paddasslem1 ( ( ( 𝐾 ∈ HL ∧ ( 𝑥𝐴𝑟𝐴𝑦𝐴 ) ∧ 𝑥𝑦 ) ∧ ¬ 𝑟 ( 𝑥 𝑦 ) ) → ¬ 𝑥 ( 𝑟 𝑦 ) )

Proof

Step Hyp Ref Expression
1 paddasslem.l = ( le ‘ 𝐾 )
2 paddasslem.j = ( join ‘ 𝐾 )
3 paddasslem.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 hlatexch2 ( ( 𝐾 ∈ HL ∧ ( 𝑥𝐴𝑟𝐴𝑦𝐴 ) ∧ 𝑥𝑦 ) → ( 𝑥 ( 𝑟 𝑦 ) → 𝑟 ( 𝑥 𝑦 ) ) )
5 4 con3dimp ( ( ( 𝐾 ∈ HL ∧ ( 𝑥𝐴𝑟𝐴𝑦𝐴 ) ∧ 𝑥𝑦 ) ∧ ¬ 𝑟 ( 𝑥 𝑦 ) ) → ¬ 𝑥 ( 𝑟 𝑦 ) )