Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddasslem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddasslem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddasslem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
simpl11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝐾 ∈ HL ) |
6 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑝 ∈ 𝐴 ) |
7 |
|
simpl3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑟 ∈ 𝐴 ) |
8 |
5 6 7
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) |
9 |
|
an6 |
⊢ ( ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑍 ) ) ) |
10 |
|
ssel2 |
⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝐴 ) |
11 |
|
ssel2 |
⊢ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝐴 ) |
12 |
|
ssel2 |
⊢ ( ( 𝑍 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ 𝐴 ) |
13 |
10 11 12
|
3anim123i |
⊢ ( ( ( 𝑋 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑌 ) ∧ ( 𝑍 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑍 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
14 |
9 13
|
sylbi |
⊢ ( ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
15 |
14
|
3ad2antl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
16 |
15
|
adantrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
17 |
|
simpl12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑝 ≠ 𝑧 ) |
18 |
|
simpl13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑥 ≠ 𝑦 ) |
19 |
|
simprr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) |
20 |
17 18 19
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) ) |
21 |
|
simprr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ) |
22 |
|
simprr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) |
23 |
1 2 3
|
paddasslem4 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) ) ∧ ( 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → ∃ 𝑠 ∈ 𝐴 ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) |
24 |
8 16 20 21 22 23
|
syl32anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ∃ 𝑠 ∈ 𝐴 ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) |
25 |
|
simpl2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) |
26 |
|
simpl3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) |
27 |
5 25 26
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ) |
29 |
|
simplrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ) |
30 |
19 22
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) |
32 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → 𝑠 ∈ 𝐴 ) |
33 |
|
simprrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ) |
34 |
|
simprrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) |
35 |
32 33 34
|
3jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) |
36 |
1 2 3 4
|
paddasslem9 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
37 |
28 29 31 35 36
|
syl13anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) → 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
38 |
24 37
|
rexlimddv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) ) ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) ) → 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |