Step |
Hyp |
Ref |
Expression |
1 |
|
paddasslem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddasslem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddasslem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddasslem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
simplll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝐾 ∈ HL ) |
6 |
|
simplr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑍 ⊆ 𝐴 ) |
7 |
|
simplr1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑋 ⊆ 𝐴 ) |
8 |
|
simplr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑌 ⊆ 𝐴 ) |
9 |
3 4
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
10 |
5 7 8 9
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
11 |
3 4
|
sspadd2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑍 ⊆ 𝐴 ∧ ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) → 𝑍 ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
12 |
5 6 10 11
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑍 ⊆ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑝 = 𝑧 ) |
14 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑧 ∈ 𝑍 ) |
15 |
13 14
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑝 ∈ 𝑍 ) |
16 |
12 15
|
sseldd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑝 = 𝑧 ) ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ 𝑧 ∈ 𝑍 ) → 𝑝 ∈ ( ( 𝑋 + 𝑌 ) + 𝑍 ) ) |