Metamath Proof Explorer


Theorem paddasslem3

Description: Lemma for paddass . Restate projective space axiom ps-2 . (Contributed by NM, 8-Jan-2012)

Ref Expression
Hypotheses paddasslem.l = ( le ‘ 𝐾 )
paddasslem.j = ( join ‘ 𝐾 )
paddasslem.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion paddasslem3 ( ( 𝐾 ∈ HL ∧ ( 𝑥𝐴𝑟𝐴𝑦𝐴 ) ∧ ( 𝑝𝐴𝑧𝐴 ) ) → ( ( ( ¬ 𝑥 ( 𝑟 𝑦 ) ∧ 𝑝𝑧 ) ∧ ( 𝑝 ( 𝑥 𝑟 ) ∧ 𝑧 ( 𝑟 𝑦 ) ) ) → ∃ 𝑠𝐴 ( 𝑠 ( 𝑥 𝑦 ) ∧ 𝑠 ( 𝑝 𝑧 ) ) ) )

Proof

Step Hyp Ref Expression
1 paddasslem.l = ( le ‘ 𝐾 )
2 paddasslem.j = ( join ‘ 𝐾 )
3 paddasslem.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 ps-2 ( ( ( 𝐾 ∈ HL ∧ ( 𝑥𝐴𝑟𝐴𝑦𝐴 ) ∧ ( 𝑝𝐴𝑧𝐴 ) ) ∧ ( ( ¬ 𝑥 ( 𝑟 𝑦 ) ∧ 𝑝𝑧 ) ∧ ( 𝑝 ( 𝑥 𝑟 ) ∧ 𝑧 ( 𝑟 𝑦 ) ) ) ) → ∃ 𝑠𝐴 ( 𝑠 ( 𝑥 𝑦 ) ∧ 𝑠 ( 𝑝 𝑧 ) ) )
5 4 ex ( ( 𝐾 ∈ HL ∧ ( 𝑥𝐴𝑟𝐴𝑦𝐴 ) ∧ ( 𝑝𝐴𝑧𝐴 ) ) → ( ( ( ¬ 𝑥 ( 𝑟 𝑦 ) ∧ 𝑝𝑧 ) ∧ ( 𝑝 ( 𝑥 𝑟 ) ∧ 𝑧 ( 𝑟 𝑦 ) ) ) → ∃ 𝑠𝐴 ( 𝑠 ( 𝑥 𝑦 ) ∧ 𝑠 ( 𝑝 𝑧 ) ) ) )