Description: Lemma for paddass . Restate projective space axiom ps-2 . (Contributed by NM, 8-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paddasslem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
paddasslem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
paddasslem.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
Assertion | paddasslem3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ∧ 𝑝 ≠ 𝑧 ) ∧ ( 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑧 ≤ ( 𝑟 ∨ 𝑦 ) ) ) → ∃ 𝑠 ∈ 𝐴 ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddasslem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
2 | paddasslem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
3 | paddasslem.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
4 | 1 2 3 | ps-2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ∧ 𝑝 ≠ 𝑧 ) ∧ ( 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑧 ≤ ( 𝑟 ∨ 𝑦 ) ) ) ) → ∃ 𝑠 ∈ 𝐴 ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) |
5 | 4 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ¬ 𝑥 ≤ ( 𝑟 ∨ 𝑦 ) ∧ 𝑝 ≠ 𝑧 ) ∧ ( 𝑝 ≤ ( 𝑥 ∨ 𝑟 ) ∧ 𝑧 ≤ ( 𝑟 ∨ 𝑦 ) ) ) → ∃ 𝑠 ∈ 𝐴 ( 𝑠 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑠 ≤ ( 𝑝 ∨ 𝑧 ) ) ) ) |